過點作斜率為的直線與橢圓相交于,若是線段的中點,則橢圓的離心率為     

試題分析:設,則由兩式相減變形得:,從而
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
在平面直角坐標系中,橢圓的離心率為,直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過原點的直線與橢圓交于兩點(不是橢圓的頂點).點在橢圓上,且,直線軸、軸分別交于兩點.
(i)設直線的斜率分別為,證明存在常數(shù)使得,并求出的值;
(ii)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(滿分14分)如圖在平面直角坐標系中,分別是橢圓的左右焦點,頂點的坐標是,連接并延長交橢圓于點,過點軸的垂線交橢圓于另一點,連接.

(1)若點的坐標為,且,求橢圓的方程;
(2)若,求橢圓離心率的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)(2011•湖北)平面內(nèi)與兩定點A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點的軌跡,加上A1、A2兩點所成的曲線C可以是圓、橢圓成雙曲線.
(Ⅰ)求曲線C的方程,并討論C的形狀與m值的關系;
(Ⅱ)當m=﹣1時,對應的曲線為C1;對給定的m∈(﹣1,0)∪(0,+∞),對應的曲線為C2,設F1、F2是C2的兩個焦點.試問:在C1上,是否存在點N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,已知△ABC的三個頂點都在拋物線y2=2px(p>0)上,拋物線的焦點F在AB上,AB的傾斜角為60°,|BF|=|CF|=4,則直線AC的斜率為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設拋物線y2=2x的焦點為F,過點M(
3
,0)的直線與拋物線相交于A、B兩點,與拋物線的準線相交于點C,|BF|=2,則△BCF與△ACF的面積之比
S△BCF
S△ACF
=( 。
A.
4
5
B.
2
3
C.
4
7
D.
1
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

平面上以機器人在行進中始終保持與點的距離和到直線的距離相等.若機器人接觸不到過點且斜率為的直線,則的取值范圍是___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線與橢圓相交于A、B兩點.
(1)若橢圓的離心率為,焦距為2,求線段AB的長;
(2)若向量與向量互相垂直(其中為坐標原點),當橢圓的離心率時,求橢圓長軸長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果橢圓的弦被點(4,2)平分,則這條弦所在的直線方程是 (     )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案