已知圓
:
內(nèi)有一點
,過點
作直線
交圓
于
,
兩點.
(1)當(dāng)
經(jīng)過圓心
時,求直線
的方程;
(2)當(dāng)弦
被點
平分時,寫出直線
的方程.[
(1)
;(2)
.
試題分析:(1)求出圓的圓心,代入直線方程,求出直線的斜率,即可求直線
的方程;(2)當(dāng)弦
被點
平分時,求出直線的斜率,即可寫出直線
的方程.
試題解析:(1)已知圓
:
的圓心為
因直線過點
、
,所以直線
的斜率為
,直線
的方程為
,
即
.
(2)當(dāng)弦
被點
平分時,
斜率為
,
直線
的方程為
,即
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
中,頂點
,邊
上的中線
所在直線的方程是
,邊
上高
所在直線的方程是
.
(1)求點
、C的坐標(biāo); (2)求
的外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
[2014·武漢調(diào)研]直線x-2y+1=0關(guān)于直線x=1對稱的直線方程是( )
A.x+2y-1=0 | B.2x+y-1=0 |
C.2x+y-3=0 | D.x+2y-3=0 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知方程
,它們所表示的曲線可能是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在平面直角坐標(biāo)系
中,若圓
上存在
,
兩點,且弦
的中點為
,則直線
的方程為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
過點P(3,4)的動直線與兩坐標(biāo)軸的交點分別為A,B,過A,B分別作兩軸的垂線交于點M,則點M的軌跡方程是。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在平面直角坐標(biāo)系xOy中,已知圓C
1:(x+3)
2+(y-1)
2=4和圓C
2:(x-4)
2+(y-5)
2=4.
(1)若直線l過點A(4,0),且被圓C
1截得的弦長為2
,求直線l的方程;
(2)設(shè)P為平面上的點,滿足:存在過點P的無窮多對互相垂直的直線l
1和l
2,它們分別與圓C
1和圓C
2相交,且直線l
1被圓C
1截得的弦長與直線l
2被圓C
2截得的弦長相等,試求所有滿足條件的點P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知直線l:x+2y-2=0,試求:
(1) 點P(-2,-1)關(guān)于直線l的對稱點坐標(biāo);
(2) 直線l1:y=x-2關(guān)于直線l對稱的直線l2的方程;
(3) 直線l關(guān)于點(1,1)對稱的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
點
A(1,3)關(guān)于直線
y=
kx+
b對稱的點是
B(-2,1),則直線
y=
kx+
b在
x軸上的截距是( )
查看答案和解析>>