(本小題滿分12分)
如圖1,在三棱錐P-A.BC中,PA.⊥平面A.BC,A.C⊥BC,D為側(cè)棱PC上一點,它的正(主)視圖和側(cè)(左)視圖如圖2所示.
(1) 證明:A.D⊥平面PBC;
(2) 求三棱錐D-A.BC的體積;
(3) 在∠A.CB的平分線上確定一點Q,使得PQ∥平面A.BD,并求此時PQ的長.
(1)見解析
(2) ;
(3)
【解析】本題考查由三視圖求面積、體積,直線與平面平行的性質(zhì),直線與平面垂直的判定,考查空間想象能力,邏輯思維能力,計算能力,是中檔題
(Ⅰ)證明AD垂直平面PBC內(nèi)的兩條相交直線PC、BC,即可證明AD⊥平面PBC;
(Ⅱ)求出三棱錐的底面ABC的面積,求出高BC,再求三棱錐D-ABC的體積;
(Ⅲ)取AB的中點O,連接CO并延長至Q,使得CQ=2CO,點Q即為所求,證明PQ平行平面ABD內(nèi)的直線OD,即可證明PQ∥平面ABD,在直角△PAQ中,求此時PQ的長.
(2)
…… 8分
(3)取A.B的中點O,連接CO并延長至Q,使得CQ=2CO,連接PQ,OD,點Q即為所求.
因為O為CQ的中點,D為PC的中點, PQ∥OD,
PQ平面A.BD, OD平面A.BD PQ∥平面A.BD
連接A.Q,BQ,
四邊形A.CBQ的對角線互相平分, 且A.C=BC,A.CBC,
四邊形A.CBQ為正方形,CQ即為∠A.CB的平分線
又A.Q=4,PA.平面A.BC
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com