(本小題滿分12分)有對(duì)稱中心的曲線叫有心曲線,如圓、橢圓、雙曲線都是有心曲線,過有心曲線的中心的弦叫有心曲線的直徑,有心曲線有許多類似的優(yōu)美性質(zhì)。

(1)定理:過圓上異于直徑兩端點(diǎn)的任意一點(diǎn)與直徑兩端點(diǎn)的連線斜率之積為定值.試寫出該定理在橢圓中的類似結(jié)論;

(2)定理:圓的兩條互相垂直的直徑稱為共軛直徑,且這兩條共軛直徑與圓相交得到的四邊形的面積為定值.在橢圓中兩條斜率之積為的直徑稱為共軛直徑,試探究橢圓中兩條共軛直徑與橢圓相交得到的四邊形的面積的類似結(jié)論,并加以證明.

(2)依題意橢圓中有類似定理:

橢圓的兩條直徑的斜率之積為時(shí),稱為共軛直徑.特別地,當(dāng)一條直徑的斜率不存在,另一條直徑的斜率為零時(shí)也稱為共軛直徑.兩條共軛直徑與橢圓相交得到的四邊形的面積為定值2ab.    ………………………………………………………………8分

證明:①當(dāng)兩條共軛直徑為橢圓的長(zhǎng)短軸時(shí),對(duì)應(yīng)的四邊形面積為2ab.……… 9分

②一般地,可設(shè)直徑AC的斜率為k,則共軛直徑BD的斜率為k≠0),

設(shè)Ax1,y1),Cx2,y2),

由  ,

,

同理可得 ,

D到直線AC的距離為,

S四邊形ABCD=|ACd為定值. ………12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案