甲、乙兩人進(jìn)行一場(chǎng)比賽,比賽采取5局3勝制.假定每局比賽中甲獲勝的概率是乙獲勝的概率是,且各局比賽之間相互沒(méi)有影響.

(1)求打滿5局且乙勝的概率;

(2)設(shè)甲勝的概率為a,乙勝的概率為b,求a∶b

答案:
解析:

  解:(1)

  (2)

  

  


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三人兵乓球?qū)官愔,甲、乙、丙三名選手進(jìn)行單循環(huán)賽(即每?jī)扇吮荣愐粓?chǎng)),共賽三場(chǎng),每場(chǎng)比賽勝者得1分,輸者得0分,沒(méi)有平局;在每一場(chǎng)比賽中,甲勝乙的概率為
1
3
,甲勝丙的概率為
1
4
,乙勝丙的概率為
1
3

(1)求甲獲得小組第一且丙獲得小組第二的概率;
(2)求三人得分相同的概率;
(3)求甲不是小組第一的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩人進(jìn)行一項(xiàng)游戲比賽,比賽規(guī)則如下:甲從區(qū)間[0,1]上隨機(jī)等可能地抽取一個(gè)實(shí)數(shù)記為b,乙從區(qū)間[0,1]上隨機(jī)等可能地抽取一個(gè)實(shí)數(shù)記為c(b,c可以相等),若關(guān)于x的方程x2+2bx+c=0有實(shí)根,則甲獲勝,否則乙獲勝.
(Ⅰ)求一場(chǎng)比賽中甲獲勝的概率;
(Ⅱ)設(shè)n場(chǎng)比賽中,甲恰好獲勝k場(chǎng)的概率為Pnk(k≤n,k∈N,n∈N*),求
n
k=0
k
n
P
k
n
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩人之間進(jìn)行一場(chǎng)打完7局的比賽(每局無(wú)平局),則比賽結(jié)果出現(xiàn)甲比乙為4:3的概率是( 。
A、
35
128
B、
5
16
C、
4
7
D、
5
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣元三模)在一次運(yùn)動(dòng)會(huì)中,某小組內(nèi)的甲、乙、丙三名選手進(jìn)行單循環(huán)賽(即每?jī)扇吮荣愐粓?chǎng))共賽三場(chǎng),每場(chǎng)比賽勝者得1分,輸者得0分,、沒(méi)有平局;在參與的每一場(chǎng)比賽中,甲勝乙的概率為
1
3
,甲勝丙的概率為
1
4
,乙勝丙的概率為
1
3

(I)求甲獲得小組第一且丙獲得小組第二的概率;
(II)求三人得分相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省鹽城市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

甲、乙兩人進(jìn)行一項(xiàng)游戲比賽,比賽規(guī)則如下:甲從區(qū)間[0,1]上隨機(jī)等可能地抽取一個(gè)實(shí)數(shù)記為b,乙從區(qū)間[0,1]上隨機(jī)等可能地抽取一個(gè)實(shí)數(shù)記為c(b,c可以相等),若關(guān)于x的方程x2+2bx+c=0有實(shí)根,則甲獲勝,否則乙獲勝.
(Ⅰ)求一場(chǎng)比賽中甲獲勝的概率;
(Ⅱ)設(shè)n場(chǎng)比賽中,甲恰好獲勝k場(chǎng)的概率為Pnk(k≤n,k∈N,n∈N*),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案