16.直線y=2x+b與圓x2+y2=9相切,則b=$3\sqrt{5}$或$-3\sqrt{5}$.

分析 由圓的方程求出圓心和半徑,根據(jù)點(diǎn)到直線距離公式、直線和圓相切的條件列出方程,求出b的值.

解答 解:由題意得,圓x2+y2=9的半徑為3、圓心坐標(biāo)是(0,0),
∵直線y=2x+b與圓x2+y2=9相切,
∴圓心(0,0)到直線的距離d=$\frac{|b|}{\sqrt{{2}^{2}+{(-1)}^{2}}}$=3,
解得b=$3\sqrt{5}$或b=$-3\sqrt{5}$,
故答案為:$3\sqrt{5}$或$-3\sqrt{5}$.

點(diǎn)評 本題考查直線和圓相切的條件,以及點(diǎn)到直線的距離公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)f(x)=$\frac{ex}{1+a{x}^{2}}$,其中a為正實(shí)數(shù).
(1)當(dāng)a=$\frac{16}{15}$時(shí),求f(x)的極值點(diǎn);
(2)若f(x)為R上的單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知x,y滿足x2+y2=1,則$\frac{y-2}{x-1}$的最小值為( 。
A.$\frac{1}{2}$B.2C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在正三棱錐P-ABC中,底面邊長AB=$\sqrt{2}$,側(cè)棱PA=1,M,N分別是線段PA,BC上的動點(diǎn)(可以和端點(diǎn)重合),則|MN|的取值范圍是(  )
A.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]B.[$\frac{1}{2},\sqrt{2}$]C.[$\frac{\sqrt{2}}{2}$,$\sqrt{3}$]D.[$\frac{1}{2}$,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$經(jīng)過點(diǎn)$({1,\frac{3}{2}})$,離心率為$\frac{1}{2}$,設(shè)A、B橢圓C上異于左頂點(diǎn)P的兩個(gè)不同點(diǎn),直線PA和PB的傾斜角分別為α和β,且α+β為定值θ(0<θ<π)
(Ⅰ)求橢圓C的方程;
(Ⅱ)證明直線AB恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2{x}^{3}-a{x}^{2}-1,x<0}\\{|x-3|+a,x≥0}\end{array}\right.$恰有兩個(gè)零點(diǎn),則a的取值范圍是( 。
A.(-3,0)B.(-∞,0)C.(-∞,-3)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=$\left\{\begin{array}{l}{6^x}-m,\begin{array}{l}{x<1}\end{array}\\{x^2}-3mx+2{m^2},x≥1\end{array}$恰有2個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是[$\frac{1}{2}$,1)∪[6,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)的定義域?yàn)镽,f(x)=$\left\{\begin{array}{l}{x,0≤x≤1}\\{(\frac{1}{2})^{x}-1,-1≤x<0}\end{array}\right.$,且對任意的x∈R都有f(x+1)=f(x-1),若在區(qū)間[-1,3]上函數(shù)g(x)=f(x)-mx-m恰有三個(gè)不同零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.(0,$\frac{1}{4}$]B.($\frac{1}{4}$,$\frac{1}{2}$)C.(0,$\frac{1}{2}$]D.[$\frac{1}{4}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ex(x2-3).
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求函數(shù)y=f(x)的極值.

查看答案和解析>>

同步練習(xí)冊答案