17.有甲乙兩個班級進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表:

 
優(yōu)秀
非優(yōu)秀
總計
甲班
10[來源:學科網(wǎng)ZXXK]
 
 
乙班
 
30
[來源:學#科#網(wǎng)]
合計
 
 
105
   已知在全部105人中抽到隨機抽取2人為優(yōu)秀的概率為
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認為“成績與班級有關(guān)系”。
(3)若按下面的方法從甲班優(yōu)秀的學生抽取一人;把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取的人的序號,試求抽到6或10的概率。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
某車間甲組有10名工人,其中有4名女工人;乙組有5名工人,其中有3名女工人,現(xiàn)在采用分層抽樣法(層內(nèi)采用不放回的簡單隨機抽樣)從甲,乙兩組中共抽取3人進行技術(shù)考核.
(1)求甲,乙兩組各抽取的人數(shù);
(2)求從甲組抽取的工人中恰有1名女工的概率;
(3)令X表示抽取的3名工人中男工人的人數(shù),求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


(12分)(理)在某校舉行的數(shù)學競賽中,全體參賽學生的競賽成績近似服從正態(tài)分布。已知成績在90分以上(含90分)的學生有12名。
(Ⅰ)、試問此次參賽學生總數(shù)約為多少人?
(Ⅱ)、若該校計劃獎勵競賽成績排在前50名的學生,試問設獎的分數(shù)線約為多少分?可共查閱的(部分)標準正態(tài)分布表


0
1
2
3
4
5
6
7
8
9
1.2
1.3
1.4
1.9
2.0
2.1
0.8849
0.9032
0.9192
0.9713
0.9772
0.9821
0.8869
0.9049
0.9207
0.9719
0.9778
0.9826
0.888
0.9066
0.9222
0.9726
0.9783
0.9830
0.8907
0.9082
0.9236
0.9732
0.9788
0.9834
0.8925
0.9099
0.9251
0.9738
0.9793
0.9838
0.8944
0.9115
0.9265
0.9744
0.9798
0.9842
0.8962
0.9131
0.9278
0.9750
0.9803
0.9846
0.8980
0.9147
0.9292
0.9756
0.9808
0.9850
0.8997
0.9162
0.9306
0.9762
0.9812
0.9854
0.9015
0.9177
0.9319
0.9767
0.9817
0.9857
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
某種產(chǎn)品的廣告費支出與銷售額(單位:萬元)之間有如下對應數(shù)據(jù):


2
4
5
6
8

30
40
60
50
70
 
(Ⅰ)求回歸直線方程;
(Ⅱ)試預測廣告費支出為10萬元時,銷售額多大?
(Ⅲ)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預測值與實際值之差的
絕對值不超過5的概率。
(參考數(shù)據(jù):    ,
參考公式:回歸直線方程,其中 )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)為抗擊金融風暴,某工貿(mào)系統(tǒng)決定對所屬企業(yè)給予低息貸款的扶持,該系統(tǒng)先根據(jù)相關(guān)評分標準對各個企業(yè)進行了評估,并依據(jù)評估得分將這些企業(yè)分別評定為優(yōu)秀、良好、合格、不合格4個等級,然后根據(jù)評估等級分配相應的低息貸款金額,其評估標準和貸款金額如下表:

評估得分
[50,60)
[60,70)
[70,80)
[80,90]
評定類型
不合格
合格
良好
優(yōu)秀
貸款金額(萬元)
0
200
400
800
為了更好地掌控貸款總額,該系統(tǒng)隨機抽查了所屬部分企業(yè)的評估分數(shù),得其頻率分布直方圖如下
(1)估計該系統(tǒng)所屬企業(yè)評估得分的中位數(shù)及平均分;
(2)該系統(tǒng)要求各企業(yè)對照評分標準進行整改,若整改后優(yōu)秀企業(yè)數(shù)量不變,不合格企業(yè)、合格企業(yè)、良好企業(yè)的數(shù)量依次成等差數(shù)列,系統(tǒng)所屬企業(yè)獲得貸款的均值(即數(shù)學期望)不低于410萬元,那么整改后不合格企業(yè)占企業(yè)總數(shù)的百分比的最大值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某工廠2010年第三季度生產(chǎn)的A,B,C,D四種型號的產(chǎn)品產(chǎn)量用條形圖形表示如圖,現(xiàn)用分層抽樣的方法從中選取50件樣品參加2011年4月份的一個展銷會。

(1)A,B,C,D型號的產(chǎn)品各抽取多少件?
(2)從50件樣品隨機地抽取2件,求這2件產(chǎn)品恰好是不同型號產(chǎn)品的概率。
(3)從A,C型號的樣品中隨機地抽取3件,用ξ表示抽取A型號的產(chǎn)品件數(shù),求ξ的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

本小題滿分12分)
次運動會甲、乙兩名射擊運動員成績?nèi)缦拢?br />甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;
乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;
(1)用莖葉圖表示甲,乙兩個成績;
(2)分別計算兩個樣本的平均數(shù)和標準差s,并根據(jù)計算結(jié)果估計哪位運動員的成績比較穩(wěn)定。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

((本小題滿分14分)
某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下的對應數(shù)據(jù):

x
2
4
5
6
8
y
30
40
50
60
70
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程=x+;
(3)要使這種產(chǎn)品的銷售額突破一億元(含一億元),則廣告費支出至少為多少百萬元?
(結(jié)果精確到0.1,參考數(shù)據(jù):2×30+4×40+5×50+6×60+8×70=1390)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一機器可以按各種不同速度運轉(zhuǎn),其生產(chǎn)的產(chǎn)品有一些會有缺點,每小時生產(chǎn)有缺點的產(chǎn)品數(shù)隨機器運轉(zhuǎn)速度的不同而變化。下表為其試驗數(shù)據(jù):

 速度(x轉(zhuǎn)/秒)

其中:

 
每小時生產(chǎn)有缺點的產(chǎn)品數(shù)(y個)

8
6
9
8
10
10
13
12
(1)、畫出散點圖;
(2)、求機器運轉(zhuǎn)速度與每小時生產(chǎn)有缺點的產(chǎn)品數(shù)之間的回歸方程;(系數(shù)用分數(shù)表示)
(3)、若實際生產(chǎn)所允許的每小時生產(chǎn)有缺點的產(chǎn)品數(shù)不超過10件,那么機器的速度每秒不超過多少轉(zhuǎn)?

查看答案和解析>>

同步練習冊答案