已知A={x|-1<x<1},B={x|x<a}.
(1)若a=0,求A∩B,A∪B;
(2)若A∩B=φ,求a的取值范圍;
(3)若A∪B={x|x<1},求a的取值范圍.
考點(diǎn):并集及其運(yùn)算,交集及其運(yùn)算
專題:集合
分析:(1)把a(bǔ)=0時(shí)代入集合B即可;
(2)根據(jù)A∩B=φ,得出a的取值范圍;
(3)根據(jù)A∪B,集合集合A、B,求a的取值范圍.
解答: 解:(1)當(dāng)a=0時(shí),B={x|x<0},
∴A∩B={x|-1<x<o(jì)},A∪B={x|x<1}
(2)∵A∩B=φ,∴a≤-1,
∴{a|a≤-1}
(3)∵A∪B={x|x<1},
∴-1<a≤1,
∴{a|-1<a≤1}
點(diǎn)評(píng):本題主要考查集合子交并補(bǔ),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

極坐標(biāo)方程4ρsin2
θ
2
=5表示的曲線為(  )
A、直線B、圓C、橢圓D、拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在二面角α-l-β的α面上有Rt△ABC,斜邊BC在l上,A在β面上的射影為D,∠ABD為θ1,∠ACD為θ2,二面角α-l-β為θ.請(qǐng)問(wèn)以下條件哪一個(gè)成立( 。
A、sin2θ=sin2θ1+sin2θ2
B、cos2θ=cos2θ1+cos2θ2
C、tan2θ=tan2θ1+tan2θ2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F(xiàn)分別是AC,PB的中點(diǎn).求證:
(Ⅰ)EF∥平面PCD;
(Ⅱ)BD⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某城市連鎖經(jīng)營(yíng)公司所屬的5個(gè)零售店某月的銷售額和利潤(rùn)額資料如下表:
商店名稱ABCDE
銷售額(x)/千萬(wàn)元35679
利潤(rùn)額(y)/百萬(wàn)元23345
(1)畫(huà)出銷售額和利潤(rùn)額的散點(diǎn)圖,并判斷銷售額和利潤(rùn)額是否具有相關(guān)關(guān)系;
(2)求利潤(rùn)額y對(duì)銷售額x的回歸直線方程.
(參考:b=
n
i-1
xiyi-n
.
x
.
y
n
i-1
xi2-n
.
x
-2
,d=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
3
x3-
a
2
x2+bx+c,曲線y=f(x)在點(diǎn)P(0,f(0))處的切線方程為y=1
(1)確定b,c的值;
(2)若過(guò)點(diǎn)(0,2)可作曲線y=f(x)的三條不同切線,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)如圖,已知矩形ABCD中,AB=3,BC=a,若PA⊥平面ABCD,在BC邊上取點(diǎn)E,使得PE⊥DE,則滿足條件的E點(diǎn)有兩個(gè)時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(α)=
(1+cos2α)cos(
3
2
π-α)
2cos(π+α)

(1)設(shè)A是△ABC的內(nèi)角,且為鈍角,求f(A)的最小值;
(2)設(shè)A,B是銳角△ABC的內(nèi)角,且A+B=
12
,f(A)=1,BC=2,求△ABC 的三個(gè)內(nèi)角的大小和AC邊的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
9
x
,
(1)判斷函數(shù)在區(qū)間(0,3]上是增函數(shù)還是減函數(shù)?并用定義證明你的結(jié)論.
(2)求f(x)在區(qū)間(0,3]上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案