1.已知偶函數(shù)f(x)對任意x∈R都有f(x)=f(x-4),且f(x)在區(qū)間[-2,0]上有f(x)=$\left\{\begin{array}{l}{-{x}^{2}+\frac{3}{2}x+5,-1≤x≤0}\\{{2}^{-x}+{2}^{x},-2≤x<-1}\end{array}\right.$,若方程f(x)=($\frac{1}{2}$)|x|+b恰好有4個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)b的取值范圍是(  )
A.(0,2)B.(2,$\frac{33}{8}$)C.(2,$\frac{19}{8}$)D.($\frac{19}{8}$,$\frac{33}{8}$)

分析 作出函數(shù)圖象,根據(jù)函數(shù)對稱性可得f(x)和y=($\frac{1}{2}$)|x|+b在(0,+∞)上有2個(gè)交點(diǎn),根據(jù)圖象列出不等式解出b的范圍.

解答 解:∵f(x)=f(x-4),∴f(x)的周期為4,
又f(x)是偶函數(shù),作出f(x)和y=($\frac{1}{2}$)|x|+b在(0,+∞)上的函數(shù)圖象如圖所示:

∵y=f(x)與y=($\frac{1}{2}$)|x|+b都是偶函數(shù),且方程f(x)=($\frac{1}{2}$)|x|+b恰好有4個(gè)不等的實(shí)數(shù)根,
∴f(x)和y=($\frac{1}{2}$)|x|+b在(0,+∞)上有2個(gè)交點(diǎn),
∴$\left\{\begin{array}{l}{\frac{1}{2}+b>\frac{5}{2}}\\{\frac{1}{8}+b<\frac{5}{2}}\end{array}\right.$,解得2<b<$\frac{19}{8}$.
故選C.

點(diǎn)評 本題考查了分段函數(shù)的圖象,函數(shù)的周期應(yīng)用,函數(shù)零點(diǎn)與函數(shù)圖象的關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)是(-∞,+∞)上的增函數(shù),a,b∈R,命題:若a+b≥0,則f(a)+f(b)≥f(-a)+f(-b)
判斷此命題的逆命題是否成立,并用反證法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓的焦距為6,在x軸上的一個(gè)焦點(diǎn)F與短軸兩端點(diǎn)的連線互相垂直.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線$y=\frac{1}{2}x+1$與橢圓相交于A.B.求△ABF的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)$f(x)=sin(ωx+\frac{π}{6})+ω(ω>0)$的部分圖象如圖所示,則下列選項(xiàng)判斷錯(cuò)誤的是( 。
A.|MN|=πB.$f(\frac{7π}{3})=2$C.$f(x)+f(-x-\frac{π}{3})=1$D.$f(\frac{π}{3}-x)=f(\frac{π}{3}+x)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.{an}是a1=2,d=2的等差數(shù)列,其前n項(xiàng)和公式為(  )
A.Sn=n2-nB.Sn=n2-2nC.Sn=n2+nD.Sn=n2+2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知a,b,c分別是△ABC中角A,B,C的對邊,G是△ABC的三條邊上中線的交點(diǎn),若$\overrightarrow{GA}+(a+b)\overrightarrow{GB}+2c\overrightarrow{GC}$=$\overrightarrow 0$,且$\frac{1}{a}+\frac{4}$≥m+c恒成立,則實(shí)數(shù)m的取值范圍為(  )
A.$(-∞,\frac{17}{2}]$B.$(-∞,\frac{13}{2}]$C.$[\frac{13}{2},+∞)$D.$[\frac{17}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}中,a1=3,2an+1=a${\;}_{n}^{2}$-2an+4.
(I)證明:an+1>an
(Ⅱ)證明:an≥2+($\frac{3}{2}$)n-1;
(III)設(shè)數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和為Sn,求證:1-($\frac{2}{3}$)n≤Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若集合A={(m,n)|(m+1)+(m+2)+…+(m+n)=102015,m∈N,n∈N*},則集合A中的元素個(gè)數(shù)是(  )
A.2016B.2017C.2018D.2019

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.(1)在△ABC中,若b=2,B=30°,C=135°,則a=$\sqrt{6}$-$\sqrt{2}$.
(2)在△ABC中,若S△ABC=$\frac{1}{4}$ (a2+b2-c2),那么角∠C=$\frac{π}{4}$.

查看答案和解析>>

同步練習(xí)冊答案