15.將石子擺成如圖所示的梯形形狀.稱數(shù)列5,9,14,20,…為“梯形數(shù)”.根據(jù)圖形的構(gòu)成,此數(shù)列的第2 014項(xiàng)與5的差,即a2014-5=( 。
A.2 018×2 012B.2 020×2 013C.1 009×2 012D.1 010×2 013

分析 根據(jù)前面圖形中,編號(hào)與圖中石子的個(gè)數(shù)之間的關(guān)系,分析他們之間存在的關(guān)系,并進(jìn)行歸納,用得到一般性規(guī)律,即可求得結(jié)論.

解答 解:由已知的圖形我們可以得出圖形的編號(hào)與圖中石子的個(gè)數(shù)之間的關(guān)系為:
n=1時(shí),a1=2+3=$\frac{1}{2}$×(2+3)×2;
n=2時(shí),a2=2+3+4=$\frac{1}{2}$×(2+4)×3;

由此我們可以推斷:
an=2+3+…+(n+2)=$\frac{1}{2}$×[2+(n+2)]×(n+1)
∴a2014-5=$\frac{1}{2}$×[2+(2014+2)]×(2014+1)-5=1010×2013.
故選D.

點(diǎn)評(píng) 歸納推理的一般步驟是:(1)通過觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在復(fù)平面內(nèi)復(fù)數(shù)1+i,1-i對(duì)應(yīng)的點(diǎn)分別為A,B,若點(diǎn)C為線段AB的中點(diǎn),則點(diǎn)C對(duì)應(yīng)的復(fù)數(shù)是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=|x|-1的減區(qū)間為( 。
A.(-∞,0)B.(-∞,-1)C.(0,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=asinx-$\frac{1}{2}$cos2x-$\frac{3}{a}$+$\frac{1}{2}$(a∈R,a≠0),若對(duì)任意x∈R都有f(x)<0,則a的取值范圍是( 。
A.[-$\frac{3}{2}$,0)B.[-1,0)∪(0,1]C.(0,1]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,若直線AB過F1,與橢圓交于A,B兩點(diǎn),且|AB|=|BF2|,AB⊥BF2,則橢圓的離心率為$\sqrt{6}$-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如果函數(shù)f(x)=-x2+2x+c的最大值為3,則實(shí)數(shù)c=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x3-3ax2-9a2x+a3
(1)設(shè)a=1,求函數(shù)f(x)的極值;
(2)若$\frac{1}{4}$<a≤1,且當(dāng)x∈[1,4a]時(shí),|f′(x)|≤12a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,$\frac{{\overrightarrow{AB}•\overrightarrow{BC}}}{3}$=$\frac{{\overrightarrow{BC}•\overrightarrow{CA}}}{2}$=$\frac{{\overrightarrow{CA}•\overrightarrow{AB}}}{1}$,則sinA:sinB:sinC=( 。
A.5:3:4B.5:4:3C.$\sqrt{5}$:$\sqrt{3}$:2D.$\sqrt{5}$:2:$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)求函數(shù)f(x)=$\frac{\sqrt{4-x}}{x-1}$的定義域.
(2)若f(x-1)=x2+2x+3,求f(x)的解析式.
(3)求函數(shù)f(x)=x2-2x+3在[0,3]上的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案