分析 (1)求出函數的導數,解關于導函數的方程,求出函數的單調區(qū)間,從而求出函數的極值即可;
(2)問題轉化為不等式$2a≤\frac{1}{x^3}+\frac{3}{x}$在x∈[1,2]上有解,根據函數的單調性求出a的范圍即可;
(3)通過討論a的范圍結合函數的單調性判斷函數的零點個數即可.
解答 解:(1)∵函數f(x)=ax3-3x2+1,
∴f'(x)=3ax2-6x=3x(ax-2)…(1分)
令f'(x)=0,得x1=0或${x_2}=\frac{2}{a}$,∵a>0,∴x1<x2,
列表如下:
x | (-∞,0) | 0 | $(0,\frac{2}{a})$ | $\frac{2}{a}$ | $(\frac{2}{a},+∞)$ |
f'(x) | + | 0 | - | 0 | + |
f(x) | ↗ | 極大值 | ↘ | 極小值 | ↗ |
點評 本題考查了函數的單調性、極值問題,考查導數的應用以及分類討論思想,轉化思想,是一道綜合題.
科目:高中數學 來源: 題型:選擇題
A. | $a+\frac{1}{a}$的最小值是2 | B. | ${a^2}+\frac{1}{a^2}$的最小值是2 | ||
C. | $a+\frac{1}{a}$的最大值是2 | D. | ${a^2}+\frac{1}{a^2}$的最大值是2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com