已知在△ABC中,已知向量
m
=(sinB,sinA-2sinC),
n
=(cosA-2cosC,cosB),且
m
n

(1)求
sinC
sinA
的值;
(2)若∠C=∠A+
π
3
,判斷△ABC的形狀.
考點:余弦定理,平面向量數(shù)量積的運算,正弦定理
專題:解三角形
分析:(1)由向量和三角函數(shù)運算,變形可得;
(2)由(1)知sinC=2sinA,把C=A+
π
3
代入化簡可得
3
sin(A-
π
6
)=0,可得A=
π
6
,C=
π
2
,可判為直角三角形.
解答: 解:(1)∵
m
=(sinB,sinA-2sinC),
n
=(cosA-2cosC,cosB),
m
n
,∴
m
n
=sinB(cosA-2cosC)+(sinA-2sinC)cosB=0,
∴cosAsinB-2sinBcosC+sinAcosB-2cosBsinC=0,
∴cosAsinB+sinAcosB=2sinBcosC+2cosBsinC
∴sin(A+B)=2sin(B+C),即sinC=2sinA,
sinC
sinA
=2;
(2)由(1)知sinC=2sinA,又∠C=∠A+
π
3

∴sin(A+
π
3
)=2sinA,∴
1
2
sinA+
3
2
cosA=2sinA,
3
2
sinA-
3
2
cosA=0,即
3
sin(A-
π
6
)=0,
∴A=
π
6
,∴C=A+
π
3
=
π
2

∴△ABC的形狀為直角三角形.
點評:本題考查解三角形,涉及向量的運算和三角形形狀的判定,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設F是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左焦點,直線l方程為x=-
a2
c
,直線l與x軸交于P點,M,N分別為橢圓的左右頂點,已知丨MN丨=2
2
,且丨PM丨=
2
丨MF丨.
(1)求橢圓標準方程.
(2)過點P的直線交橢圓與A,B兩點,求△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(3,-4),B(6,3),C(5-m,3+m).
(1)若點A,B,C是一個三角形的三個頂點,求實數(shù)m應滿足的條件;
(2)若△ABC是以A為直角頂點的直角三角形,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα,tαnβ是方程x2-3x-3=0的兩個根,求sin2(α+β)-3sin(α+β)cos(α+β)-3cos2(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

e1
,
e2
夾角60°,|
e1
|=|
e2
|=1,
a
=2
e1
+
e2
,
b
=-3
e1
+2
e2
,則
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
OA
=(-1,2),
OB
=(8,m),若
OA
AB
,則m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(ω,2),
b
=(-1,1).
(1)若|
a
|=
2
|
b
|,求ω的值;
(2)若<
a
b
>=60°,求向量
a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a1,a2,…,an為正整數(shù),其中至少有五個不同值,若對任意的i,j(1≤i<j≤n),存在k,l(k≠l,且異于i與j)使得ai+aj=ak+al,則n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是一個空間幾何體的三視圖,則該幾何體的表面積為
 

查看答案和解析>>

同步練習冊答案