【題目】給出下列四個(gè)命題:
①在中,若,則;
②已知點(diǎn),則函數(shù)的圖象上存在一點(diǎn),使得;
③函數(shù)是周期函數(shù),且周期與有關(guān),與無關(guān);
④設(shè)方程的解是,方程的解是,則.
其中真命題的序號(hào)是______.(把你認(rèn)為是真命題的序號(hào)都填上)
【答案】①③
【解析】
①利用三角形的內(nèi)角和定理以及正弦函數(shù)的單調(diào)性進(jìn)行判斷;
②根據(jù)余弦函數(shù)的有界性可進(jìn)行判斷;
③利用周期函數(shù)的定義,結(jié)合余弦函數(shù)的周期性進(jìn)行判斷;
④根據(jù)互為反函數(shù)圖象的對(duì)稱性進(jìn)行判斷.
①在中,若,則,則,由于正弦函數(shù)在區(qū)間上為增函數(shù),所以,故命題①正確;
②已知點(diǎn),則函數(shù),所以該函數(shù)圖象上不存在一點(diǎn),使得,故命題②錯(cuò)誤;
③函數(shù)的是周期函數(shù),
當(dāng)時(shí),,該函數(shù)的周期為.
當(dāng)時(shí),,該函數(shù)的周期為.
所以,函數(shù)的周期與有關(guān),與無關(guān),命題③正確;
④設(shè)方程的解是,方程的解是,
由,可得,由,可得,
則可視為函數(shù)與直線交點(diǎn)的橫坐標(biāo),
可視為函數(shù)與直線交點(diǎn)的橫坐標(biāo),如下圖所示:
聯(lián)立,得,可得點(diǎn),
由于函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對(duì)稱,
則直線與函數(shù)和函數(shù)圖象的兩個(gè)交點(diǎn)關(guān)于點(diǎn)對(duì)稱,
所以,命題④錯(cuò)誤.
故答案為:①③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,為的中點(diǎn),平面,垂足落在線段上,為的重心,已知,,,.
(1)證明:平面;
(2)求異面直線與所成角的余弦值;
(3)設(shè)點(diǎn)在線段上,使得,試確定的值,使得二面角為直二面角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線和虛線畫出的是某幾何體的三視圖,則該幾何休的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品每千克定價(jià)10元,商家采取了如下的促銷方式:
一次購買量 | 促銷方式 |
不多于20千克 | 原價(jià)出售 |
多于20千克且不多于40千克 | 不多于20千克部分,原價(jià)出售 多于20千克部分,九折出售 |
多于40千克 | 不多于20千克部分,原價(jià)出售 多于20千克且不多于40千克部分,九折出售 多于40千克部分八折出售 |
(1)求一次購買(單位:千克),此商品的花費(fèi)(單位:元)的函數(shù)解析式;
(2)某人一次購買此商品400元,問他能購得此商品多少千克?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】王老師的班上有四個(gè)體育健將甲、乙、丙、丁,他們都特別擅長短跑,在某次運(yùn)動(dòng)會(huì)上,他們四人要組成一個(gè)米接力隊(duì),王老師要安排他們四個(gè)人的出場(chǎng)順序,以下是他們四人的對(duì)話:
甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;
丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒;
王老師聽了他們四人的對(duì)話,安排了一種合理的出場(chǎng)順序,滿足了他們的所有要求, 據(jù)此我們可以斷定,在王老師安排的出場(chǎng)順序中,跑第三棒的人是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到點(diǎn)與點(diǎn)的距離之比為2,記動(dòng)點(diǎn)的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點(diǎn)作曲線C的切線,求切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的最大值為3,其圖象相鄰兩條對(duì)稱軸之間的距離為.
(Ⅰ)求函數(shù)的解析式和當(dāng)時(shí)的單調(diào)減區(qū)間;
(Ⅱ)的圖象向右平行移動(dòng)個(gè)長度單位,再向下平移1個(gè)長度單位,得到的圖象,用“五點(diǎn)法”作出在內(nèi)的大致圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)滿足對(duì)于任意實(shí)數(shù),都有,且當(dāng)時(shí),,.
(1)判斷的奇偶性并證明;
(2)判斷的單調(diào)性,并求當(dāng)時(shí),的最大值及最小值;
(3)解關(guān)于的不等式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com