如圖1-4-9,梯形ABCD的對角線交于點O,有以下四個結(jié)論:

①△AOB∽△COD;②△AOD∽△AOB;③S△DOC∶S△AOD=DC∶AB;④S△AOD=S△BOC.其中始終正確的有(    )

1-4-9

A.1個            B.2個             C.3個                    D.4個

解析:∵DC∥AB,∴△AOB∽△COD.

∴①正確,②無依據(jù).

③∵S△DOC∶S△AOD=OC∶OA,

又△AOB∽△COD,

∴OC∶OA=DC∶AB.

∴S△DOC∶S△AOD=DC∶AB,正確.

④∵△ABD與△ABC等底等高,

∴S△ABD=S△ABC.

∴S△ABD-S△ABO=S△ABC-S△ABO,

即S△AOD=S△BOC.

綜上,①③④正確.

答案:C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

將石子擺成如圖的梯形形狀.稱數(shù)列5,9,14,20,…為“梯形數(shù)”.根據(jù)圖形的構(gòu)成,數(shù)列第6項a6=
35
35
;第n項an=
(n+1)(n+4)
2
(n+1)(n+4)
2

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖南長郡中學高三年級分班考試理科數(shù)學卷 題型:解答題

(本小題滿分9分)

已知幾何體A—BCED 的三視圖如圖所示,其中側(cè)視圖和俯視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.求:

   (1)異面直線DE 與AB 所成角的余弦值;

   (2)二面角A—ED—B 的正弦值;

   (3)此幾何體的體積V 的大小.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省南京市高三第二次模擬考試數(shù)學卷 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10,共計20分。請在答題卡指定區(qū)域作答。解答應寫出文字說明、證明過程或演算步驟。

A、選修4-1:幾何證明選講

   如圖,已知梯形ABCD為圓內(nèi)接四邊形,AD//BC,過C作該圓的切線,交AD的延長線于E,求證:ΔABC∽ΔEDC。

B、選修4-2:矩形與變換

已知 為矩陣屬于λ的一個特征向量,求實數(shù)a,λ的值及A2。

C、選修4-4:坐標系與參數(shù)方程

   在平面直角坐標系xoy中,曲線C的參數(shù)方程為(α為參數(shù)),曲線D的參數(shù)方程為,(t為參數(shù))。若曲線C、D有公共點,求實數(shù)m的取值范圍。

D、選修4-5:不等式選講

   已知a,b都是正實數(shù),且ab=2。求證:(1+2a)(1+b)≥9。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆江蘇省南京市高三第二次模擬考試數(shù)學卷 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10,共計20分。請在答題卡指定區(qū)域作答。解答應寫出文字說明、證明過程或演算步驟。
A、選修4-1:幾何證明選講
如圖,已知梯形ABCD為圓內(nèi)接四邊形,AD//BC,過C作該圓的切線,交AD的延長線于E,求證:ΔABC∽ΔEDC。

B、選修4-2:矩形與變換
已知為矩陣屬于λ的一個特征向量,求實數(shù)a,λ的值及A2。
C、選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xoy中,曲線C的參數(shù)方程為(α為參數(shù)),曲線D的參數(shù)方程為,(t為參數(shù))。若曲線C、D有公共點,求實數(shù)m的取值范圍。
D、選修4-5:不等式選講
已知a,b都是正實數(shù),且ab=2。求證:(1+2a)(1+b)≥9。

查看答案和解析>>

同步練習冊答案