19.設(shè)整數(shù)n≥2,若0<a1≤a2≤a3≤…≤an,a1a2a3…an≤x,求證:a1a2a3…an-1≤x${\;}^{1-\frac{1}{n}}$.

分析 運(yùn)用換元法,可令y=a1a2a3…an,由不等式的性質(zhì)可得y=a1a2a3…an≤ann,可得an≥y${\;}^{\frac{1}{n}}$,即可得證.

解答 證明:令y=a1a2a3…an,
則y≤x,
由0<a1≤a2≤a3≤…≤an,可得:
y=a1a2a3…an≤ann,
可得an≥y${\;}^{\frac{1}{n}}$,
即有a1a2a3…an-1=$\frac{y}{{a}_{n}}$≤$\frac{y}{{y}^{\frac{1}{n}}}$=y${\;}^{1-\frac{1}{n}}$≤x${\;}^{1-\frac{1}{n}}$.
則a1a2a3…an-1≤x${\;}^{1-\frac{1}{n}}$.

點(diǎn)評(píng) 本題考查不等式的證明,注意運(yùn)用換元法和不等式的性質(zhì),考查推理能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S3=6,S4=12,定義$\underset{\stackrel{n}{π}}{k=1}$a2k-1=a1+a3+…+a2n-1為數(shù)列{an}的前n項(xiàng)奇數(shù)項(xiàng)之和,則$\underset{\stackrel{n}{π}}{k=1}$a2k-1=( 。
A.2n2-6n+4B.n2-3n+2C.2n2-2nD.n2-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若f(x)=Asinωx(A>0,ω>0)的部分圖象.
(1)求A,ω的值;
(2)求函數(shù)f(x)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知{an}的前n項(xiàng)和為Sn,且an+Sn=4(n∈N*).
(Ⅰ)求證:數(shù)列{an}是等比數(shù)列;
(Ⅱ)是否存在正整數(shù)k,使$\frac{{S}_{k+1}-2}{{S}_{k}-2}$>2成立?若存在,求出正整數(shù)k,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知cos($\frac{π}{2}$+α)=$\frac{3}{5}$,則sin(π-α)=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知a>0,b>0,且a+b=1,則$\frac{1}{a}$+$\frac{4}$的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=$\frac{1}{2}$AB=2,S為AB上一點(diǎn),且AB=4AS,M,N分別為PB,BC的中點(diǎn),則點(diǎn)C到平面MSN的距離為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}(-x),x<0\\ x-2,x≥0\end{array}\right.$若函數(shù)g(x)=a-|f(x)|有四個(gè)零點(diǎn)x1,x2,x3,x4,且x1<x2<x3<x4,則x1+x2x3+x2x4的取值范圍是[-5,-4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(1,s2),則函數(shù)f(x)=x2+2x+ξ不存在零點(diǎn)的概率為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案