在等差數(shù)列{an}和等比數(shù)列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b2成等差數(shù)列,a2,b2,a3+2成等比數(shù)列,數(shù)列{bn}的前n項和為Sn.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若Sn+an>m對任意的正整數(shù)n恒成立,求常數(shù)m的取值范圍.
(Ⅰ)an=3n﹣2,bn=2•3n﹣1;(Ⅱ){m|m<3}
【解析】
試題分析:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q(q>0),由已知得,解得d=q=3,所以an=3n﹣2,bn=2•3n﹣1;(Ⅱ)由(Ⅰ)知,從而,則3n+3n﹣3>m對任意的正整數(shù)n恒成立,構(gòu)造函數(shù)f(n)=3n+3n﹣3,則
f(n+1)﹣f(n)=2•3n﹣3>0即f(n)單調(diào)遞增,所以m<f(1)=3,答案為{m|m<3}.
試題解析:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q(q>0).
由題意,得,解得d=q=3.
∴an=3n﹣2,bn=2•3n﹣1;
(Ⅱ)∵Sn+an>m對任意的正整數(shù)n恒成立,
∴3n+3n﹣3>m對任意的正整數(shù)n恒成立,
令f(n)=3n+3n﹣3,則f(n+1)﹣f(n)=2•3n﹣3>0,
∴f(n)單調(diào)遞增,
∴m<f(1)=3.
∴常數(shù)m的取值范圍{m|m<3}
考點:1.等差數(shù)列和等比數(shù)列的通項公式;2.等比數(shù)列的求和公式;3.與正整數(shù)有關(guān)的不等式恒成立問題
科目:高中數(shù)學(xué) 來源:2015屆湖北省高二4月月考數(shù)學(xué)試卷(解析版) 題型:選擇題
若復(fù)數(shù)對應(yīng)的點在虛軸上,則實數(shù)的值為( )
A.或 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆湖北省高二5月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
,設(shè),則下列判斷中正確的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆湖北省高二5月月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
下面使用的類比推理中恰當?shù)氖牵? )
A.“若,則”類比得出“若,則”
B.“”類比得出“”
C.“”類比得出“”
D.“”類比得出“”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆湖北省高二5月月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
復(fù)數(shù)(i為虛數(shù)單位)的虛部是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省金華十校高二下學(xué)期期末考試理科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)公比為q(q>0)的等比數(shù)列{an}的前n項和為Sn.若S2=3a2+2,S4=3a4+2,則q= _________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省金華十校高二下學(xué)期期末考試理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知兩條不同的直線m、n,兩個不同的平面a、β,則下列命題中的真命題是( 。
A.若m⊥a,n⊥β,a⊥β,則m⊥n
B.若m⊥a,n∥β,a⊥β,則m⊥n
C.若m∥a,n∥β,a∥β,則m∥n
D.若m∥a,n⊥β,a⊥β,則m∥n
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省金華十校高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知點A(﹣2,4),B(4,2),直線l:ax﹣y+8﹣a=0,若直線l與直線AB平行,則a= _________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省紹興市高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
一個空間幾何體的三視圖如右圖所示,其中主視圖和側(cè)視圖都是半徑為的圓,且這個幾何體是實心球體的一部分,則這個幾何體的體積為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com