【題目】將下列集合用區(qū)間表示出來:
(1) =;
(2) =;
(3) =.
【答案】
(1)[1,+∞)
(2)[2,8]
(3)(-∞,0)∪(0,+∞)
【解析】根據(jù)區(qū)間的定義即可求解.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的定義域及其求法和區(qū)間與無窮的相關(guān)知識可以得到問題的答案,需要掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負(fù)值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;區(qū)間的概念:(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間(2)無窮區(qū)間(3)區(qū)間的數(shù)軸表示.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點為O極點,以x軸正半軸為極軸,圓C的極坐標(biāo)方程為ρ=4 .
(1)將圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)過點P(2,0)作斜率為1直線l與圓C交于A,B兩點,試求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)P為雙曲線 右支上一點,M,N分別是圓(x+4)2+y2=4和(x﹣4)2+y2=1上的點,設(shè)|PM|﹣|PN|的最大值和最小值分別為m,n,則|m﹣n|=( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平行四邊形ABCD中,已知AD=2AB=2a,BD= ,AC∩BD=E,將其沿對角線BD折成直二面角.
求證:
(1)AB⊥平面BCD;
(2)平面ACD⊥平面ABD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=1- ,則不等式f(x)<- 的解集是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 為正方體,下面結(jié)論:① 平面 ;② ;③ 平面 .其中正確結(jié)論的個數(shù)是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣ x2+bx存在極小值,且對于b的所有可能取值,f(x)的極小值恒大于0,則a的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為弘揚民族古典文化,市電視臺舉行古詩詞知識競賽,某輪比賽由節(jié)目主持人隨機從題庫中抽取題目讓選手搶答,回答正確將給該選手記正10分,否則記負(fù)10分.根據(jù)以往統(tǒng)計,某參賽選手能答對每一個問題的概率均為 ;現(xiàn)記“該選手在回答完n個問題后的總得分為Sn”.
(1)求S6=20且Si≥0(i=1,2,3)的概率;
(2)記X=|S5|,求X的分布列,并計算數(shù)學(xué)期望E(X).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com