【題目】大西洋鮭魚每年都要逆流而上,游回產(chǎn)地產(chǎn)卵,研究鮭魚的科學家發(fā)現(xiàn)鮭魚的游速(單位: )與其耗氧量單位數(shù)之間的關(guān)系可以表示為函數(shù),其中為常數(shù),已知一條鮭魚在靜止時的耗氧量為100個單位;而當它的游速為時,其耗氧量為2700個單位.
(1)求出游速與其耗氧量單位數(shù)之間的函數(shù)解析式;
(2)求當一條鮭魚的游速不高于時,其耗氧量至多需要多少個單位?
【答案】(1), ;(2)24300
【解析】試題分析 :(1)由,可得, .
(2)由題,解得: ,故其耗氧量至多需要24300個單位.
試題解析:(1)由題意,得,
解得: , .
∴游速與其耗氧量單位數(shù)之間的函數(shù)解析式為.
(2)由題意,有,即,
∴
由對數(shù)函數(shù)的單調(diào)性,有,解得: ,
∴當一條鮭魚的游速不高于時,其耗氧量至多需要24300個單位.
點晴:解決函數(shù)模型應用的解答題,還有以下幾點容易造成失分:①讀不懂實際背景,不能將實際問題轉(zhuǎn)化為函數(shù)模型.②對涉及的相關(guān)公式,記憶錯誤.③在求解的過程中計算錯誤.另外需要熟練掌握求解方程、不等式、函數(shù)最值的方法,才能快速正確地求解.含有絕對值的問題突破口在于分段去絕對值,分段后在各段討論最值的情況.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,設(shè)(其中表示中的較小者).
(1)在坐標系中畫出函數(shù)的圖像;
(2)設(shè)函數(shù)的最大值為,試判斷與1的大小關(guān)系,并說明理由.
(參考數(shù)據(jù): , , )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解適齡公務員對開放生育二胎政策的態(tài)度,某部門隨機調(diào)查了90位三十歲到四十歲的公務員,得到如下列聯(lián)表,因不慎丟失部分數(shù)據(jù).
(1)完成表格數(shù)據(jù),判斷是否有99%以上的把握認為“生二胎意愿與性別有關(guān)”并說明理由;
(2)已知15位有意愿生二胎的女性公務員中有兩位來自省婦聯(lián),該部門打算從這15位有意愿生二胎的女性公務員中隨機邀請兩位來參加座談,設(shè)邀請的2人中來自省婦聯(lián)的人數(shù)為X,求X的分布列及數(shù)學期望E(X).
男性公務員 | 女性公務員 | 總計 | |
有意愿生二胎 | 15 | 45 | |
無意愿生二胎 | 25 | ||
總計 |
P(k2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
附: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從參加高二年級期末考試的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后得到如下頻率分布表.根據(jù)相關(guān)信息回答下列問題:
(1)求a,b的值,并畫出頻率分布直方圖;
(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的平均分;
(3)用分層抽樣的方法在分數(shù)在[60,80)內(nèi)學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人的分數(shù)在[70,80)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={1,3,5,7},B={x|(2x﹣1)(x﹣5)>0},則A∩(RB)( )
A.{1,3}
B.{1,3,5}
C.{3,5}
D.{3,5,7}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了普及環(huán)保知識,增強環(huán)保意識,某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識測試.
(Ⅰ)根據(jù)題目條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認為環(huán)保知識成績優(yōu)秀與學生的文理分類有關(guān).
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計 | |
甲班 | |||
乙班 | 30 | ||
總計 | 60 |
(Ⅱ)現(xiàn)已知A,B,C三人獲得優(yōu)秀的概率分別為 ,設(shè)隨機變量X表示A,B,C三人中獲得優(yōu)秀的人數(shù),求X的分布列及期望E(X).
附: ,n=a+b+c+d
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種商品的市場需求量(萬件)、市場供應量(萬件)與市場價格(元/件)分別近似地滿足下列關(guān)系: , .當時的市場價格稱為市場平衡價格,此時的需求量稱為平衡需求量.
(1)求平衡價格和平衡需求量;
(2)若該商品的市場銷售量(萬件)是市場需求量和市場供應量兩者中的較小者,該商品的市場銷售額(萬元)等于市場銷售量與市場價格的乘積.
①當市場價格取何值時,市場銷售額取得最大值;
②當市場銷售額取得最大值時,為了使得此時的市場價格恰好是新的市場平衡價格,則政府應該對每件商品征稅多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為的函數(shù)是奇函數(shù)
(Ⅰ)求值;
(Ⅱ)判斷并證明該函數(shù)在定義域上的單調(diào)性;
(Ⅲ)若對任意的,不等式恒成立,求實數(shù)的取值范圍;
(Ⅳ)設(shè)關(guān)于的函數(shù)有零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知, ,函數(shù).
(1)求在區(qū)間上的最大值和最小值;
(2)若, ,求的值;
(3)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com