【題目】為了解某社區(qū)居民的家庭年收入所年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表:
收入x (萬(wàn)元) | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出y (萬(wàn)元) | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
據(jù)上表得回歸直線方程 = x+ ,其中 =0.76, = ﹣ ,據(jù)此估計(jì),該社區(qū)一戶收入為15萬(wàn)元家庭年支出為( )
A.11.4萬(wàn)元
B.11.8萬(wàn)元
C.12.0萬(wàn)元
D.12.2萬(wàn)元
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)和的距離之和為.
(1)求動(dòng)點(diǎn)軌跡的方程;
(2)設(shè),過(guò)點(diǎn)作直線,交橢圓于不同于的兩點(diǎn),直線, 的斜率分別為, ,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程。
在平面直角坐標(biāo)系中,已知曲線 ,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線.
(1)將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的、2倍后得到曲線
試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;
(2)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若函數(shù)與的圖像在點(diǎn)處有相同的切線,求的值;
(Ⅱ)當(dāng)時(shí),恒成立,求整數(shù)的最大值;
(Ⅲ)證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC將梯形DCFE折起,使得平面DCFE⊥平面ABCD.
(1)證明:AC∥平面BEF;
(2)求三棱錐D﹣BEF的體積;
(3)求直線AF與平面BDF所求的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是某縣參加2007年高考的學(xué)生身高條形統(tǒng)計(jì)圖,從左到右的各條形表示的學(xué)生人數(shù)依次記為A1 , A2 , …,A10(如A2表示身高(單位:cm)在[150,155)內(nèi)的學(xué)生人數(shù))圖2是統(tǒng)計(jì)圖1中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個(gè)算法流程圖.現(xiàn)要統(tǒng)計(jì)身高在160~180cm(含160cm,不含180cm)的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是( )
A.i<6
B.i<7
C.i<8
D.i<9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的圓心在x軸上,點(diǎn) 在圓C上,圓心到直線2x﹣y=0的距離為 ,則圓C的方程為( )
A.(x﹣2)2+y2=3
B.(x+2)2+y2=9
C.(x±2)2+y2=3
D.(x±2)2+y2=9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c.己知c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com