如圖,某小區(qū)有一邊長(zhǎng)為2(單位:百米)的正方形地塊OABC,其中OAE是一個(gè)游泳池,計(jì)劃在地塊OABC內(nèi)修一條與池邊AE相切的直路(寬度不計(jì)),切點(diǎn)為M,并把該地塊分為兩部分.現(xiàn)以點(diǎn)O為坐標(biāo)原點(diǎn),以線段OC所在直線為x軸,建立平面直角坐標(biāo)系,若池邊AE滿(mǎn)足函數(shù))的圖象,且點(diǎn)M到邊OA距離為
(1)當(dāng)時(shí),求直路所在的直線方程;
(2)當(dāng)t為何值時(shí),地塊OABC在直路不含泳池那側(cè)的面積取到最大,最大值是多少?

(1)(2)

解析試題分析:(1)直路與池邊AE相切,切點(diǎn)為M,點(diǎn)M到邊OA距離為,因此又切線斜率為故切線方程為,(2)用t表示出地塊OABC在直路不含泳池那側(cè)的面積. ,過(guò)切點(diǎn)M的切線,令,故切線與AB交于點(diǎn),得,又遞減,所以,故切線與OC交于點(diǎn),地塊OABC在切線右上部分區(qū)域?yàn)橹苯翘菪,面積,等號(hào),.
(1)        6分
(2),過(guò)切點(diǎn)M的切線
,令,故切線與AB交于點(diǎn);
,得,又遞減,所以
故切線與OC交于點(diǎn)。地塊OABC在切線右上部分區(qū)域?yàn)橹苯翘菪危?nbsp;    12分
面積,等號(hào),。    16分
考點(diǎn):函數(shù)實(shí)際問(wèn)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e1/c/leg7h1.png" style="vertical-align:middle;" />的函數(shù)同時(shí)滿(mǎn)足以下三個(gè)條件:
(1) 對(duì)任意的,總有;(2);(3) 若,,且,則有成立,則稱(chēng)為“友誼函數(shù)”,請(qǐng)解答下列各題:
(1)若已知為“友誼函數(shù)”,求的值;
(2)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?并給出理由.
(3)已知為“友誼函數(shù)”,假定存在,使得, 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)f(x)=log3(9x)·log3(3x),≤x≤9.
(1)若m=log3x,求m的取值范圍.
(2)求f(x)的最值,并給出最值時(shí)對(duì)應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如果函數(shù)的定義域?yàn)镽,對(duì)于定義域內(nèi)的任意,存在實(shí)數(shù)使得成立,則稱(chēng)此函數(shù)具有“性質(zhì)”。
(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有的值;若不具有“性質(zhì)”,說(shuō)明理由;
(2)已知具有“性質(zhì)”,且當(dāng)時(shí),求上有最大值;
(3)設(shè)函數(shù)具有“性質(zhì)”,且當(dāng)時(shí),.若交點(diǎn)個(gè)數(shù)為2013,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),解不等式;
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的左焦點(diǎn)為,左、右頂點(diǎn)分別為,過(guò)點(diǎn)且傾斜角為的直線交橢圓于兩點(diǎn),橢圓的離心率為,
(1)求橢圓的方程;
(2)若是橢圓上不同兩點(diǎn),軸,圓過(guò)點(diǎn),且橢圓上任意一點(diǎn)都不在圓內(nèi),則稱(chēng)圓為該橢圓的內(nèi)切圓.問(wèn)橢圓是否存在過(guò)點(diǎn)的內(nèi)切圓?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)(),其圖像在處的切線方程為.函數(shù),
(1)求實(shí)數(shù)、的值;
(2)以函數(shù)圖像上一點(diǎn)為圓心,2為半徑作圓,若圓上存在兩個(gè)不同的點(diǎn)到原點(diǎn)的距離為1,求的取值范圍;
(3)求最大的正整數(shù),對(duì)于任意的,存在實(shí)數(shù)、滿(mǎn)足,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)于函數(shù)).
(1)探索并證明函數(shù)的單調(diào)性;
(2)是否存在實(shí)數(shù)使函數(shù)為奇函數(shù)?若有,求出實(shí)數(shù)的值,并證明你的結(jié)論;若沒(méi)有,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知f(x)是偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),如果f(ax+1)≤f(x-2)在x∈[,1]上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案