4.一組數(shù)據(jù)1,3,2,5,4的方差是2.

分析 根據(jù)方差公式計算即可.S2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2].

解答 解:$\overline{x}$=(1+2+3+4+5)÷5=3,
S2=$\frac{1}{5}$[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2.
故答案為:2.

點評 本題考查方差的定義.一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為$\overline{x}$,則方差S2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知{an}為等差數(shù)列,且a1+a3=8,a2+a4=12.
(1)求{an}的通項公式;
(2)設(shè)${b_n}=\frac{a_n}{2^n}$,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(1+x)=f(1-x),當(dāng)0<x≤1時,f(x)=2x,則f(2017)+f(2016)=( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若角α的終邊經(jīng)過點(-4,3),則sinα的值為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知復(fù)數(shù)z=(m2+5m-6)+(m2-2m-15)i,(i為虛數(shù)單位,m∈R)
(1)若復(fù)數(shù)Z在復(fù)平面內(nèi)對應(yīng)的點位于第一、三象限的角平分線上,求實數(shù)M的值;
(2)當(dāng)實數(shù)m=-1時,求$|{\frac{z}{1+i}}|$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}中,其前n項和為Sn,a2=4,S5=30.
(1)求{an}的首項a1和公差d的值;
(2)設(shè)數(shù)列{bn}滿足bn=$\frac{1}{S_n}$,求數(shù)列{bn}的前項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,直三棱柱ABC-A1B1C1中,底面ABC為等腰直角三角形,AB⊥AC,AB=AC=2,AA1=3,M是側(cè)棱CC1上一點.
(1)若BM⊥A1C,求$\frac{{{C_1}M}}{MC}$的值;
(2)若MC=2,求直線BA1與平面ABM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)y=2x(0<x<3)的值域為A,函數(shù)y=lg[-(x+a)(x-a-2)](其中a>0)的定義域為B.
(1)當(dāng)a=4時,求A∩B;
(2)若A⊆B,求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若X是離散型隨機變量,P(X=x1)=$\frac{2}{3}$,P(X=x2)=$\frac{1}{3}$,且x1<x2,又已知E(X)=$\frac{4}{3}$,D(X)=$\frac{2}{9}$,則x1+x2的值為( 。
A.$\frac{5}{3}$B.$\frac{7}{3}$C.3D.$\frac{11}{3}$

查看答案和解析>>

同步練習(xí)冊答案