20.函數(shù)f(x)=3x+x2-1的零點(diǎn)個數(shù)為(  )
A.0B.1C.2D.3

分析 在同一坐標(biāo)系中,作出f(x)=3x,g(x)=1-x2,根據(jù)圖象的交點(diǎn)的個數(shù),即可得出結(jié)論.

解答 解:在同一坐標(biāo)系中,作出f(x)=3x,g(x)=1-x2,如圖所示
圖象有兩個交點(diǎn),所以函數(shù)f(x)=3x+x2-1的零點(diǎn)個數(shù)為2,
故選:C.

點(diǎn)評 本題考查函數(shù)的零點(diǎn),考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在2+$\sqrt{7}$,$\frac{2}{7}$i,0,8+5i,(1-$\sqrt{3}$)i,0.618i這幾個數(shù)中,純虛數(shù)的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.棱長為2的正方體ABCD-A1B1C1D1的所有頂點(diǎn)均在球O的球面上,E,F(xiàn),G分別為AB,AD,AA1的中點(diǎn),則平面EFG截球O所得圓的半徑為(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{15}}}{3}$C.$\frac{{2\sqrt{6}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.對于定義在R上的函數(shù)f(x)滿足兩個條件:
①當(dāng)x∈[0,1]時(shí),f(0)=0,f(1)=e,f(x)-f′(x)<0;
②ex-1f(x+1)=ex+1f(x-1),e1-xf(x+1)=ex+1f(1-x),
若函數(shù)y=f(x)-kxex零點(diǎn)有2016個,則實(shí)數(shù)k的取值范圍為( 。
A.($\frac{1}{2017}$,$\frac{1}{2015}$)B.($\frac{1}{2016}$,$\frac{1}{2014}$)
C.(-$\frac{1}{2015}$,-$\frac{1}{2017}$)∪($\frac{1}{2017}$,$\frac{1}{2015}$)D.(-$\frac{1}{2014}$,$\frac{1}{2016}$)∪($\frac{1}{2016}$,$\frac{1}{2014}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知圓O是△ABC的外接圓,AB=BC,過點(diǎn)C作圓O的切線交BA的延長線于點(diǎn)F
(Ⅰ)求證:AF•AB=CF•AC;
(Ⅱ)若AF=2,CF=2$\sqrt{2}$,求AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在極坐標(biāo)系中,直線ρsinθ-ρcosθ=1被曲線ρ=1截得的線段長為( 。
A.$\frac{1}{2}$B.1C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=sinα+cosα\\ y=1+sin2α\end{array}\right.$(α為參數(shù),α∈[0,2π)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsinθ-ρcosθ=2.
(Ⅰ)寫出直線l和曲線C的直角坐標(biāo)方程;
(Ⅱ)求直線l與曲線C交點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{3}cost}\\{y=1+\sqrt{3}sint}\end{array}\right.$(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=1.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知$A=(\begin{array}{l}{1}&{0}&{1}&{0}\\{2}&{1}&{2}&{0}\\{0}&{0}&{1}&{0}\\{1}&{1}&{1}&{1}\end{array})$,試用矩陣初等行變換法求A的逆矩陣.

查看答案和解析>>

同步練習(xí)冊答案