【題目】PM2.5是空氣質(zhì)量的一個重要指標(biāo),我國PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35μg/m3以下空氣質(zhì)量為一級,在35μg/m3~75μg/m3之間空氣質(zhì)量為二級,在75μg/m3以上空氣質(zhì)量為超標(biāo).如圖是某市2019年12月1日到10日PM2.5日均值(單位:μg/m3)的統(tǒng)計數(shù)據(jù),則下列敘述不正確的是( )
A.這10天中,12月5日的空氣質(zhì)量超標(biāo)
B.這10天中有5天空氣質(zhì)量為二級
C.從5日到10日,PM2.5日均值逐漸降低
D.這10天的PM2.5日均值的中位數(shù)是47
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)在[0,7]上有1和6兩個零點,且函數(shù)與函數(shù)都是偶函數(shù),則在[0,2019]上的零點至少有( )個
A.404B.406C.808D.812
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象過原點,且在原點處的切線與直線垂直.(為自然對數(shù)的底數(shù)).
(1)討論的單調(diào)性;
(2)若對任意的,總有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求直線與曲線公共點的極坐標(biāo);
(2)設(shè)過點的直線交曲線于,兩點,且的中點為,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線有如下光學(xué)性質(zhì):由其焦點射出的光線經(jīng)拋物線反射后,沿平行于拋物線對稱軸的方向射出.現(xiàn)有拋物線,如圖一平行于軸的光線射向拋物線,經(jīng)兩次反射后沿平行軸方向射出,若兩平行光線間的最小距離為4,則該拋物線的方程為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點,以坐標(biāo)原點O為極點,軸正半軸為極軸建立極坐標(biāo)系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足| ,記點N的軌跡為曲線C.
(1)①設(shè)動點,記是直線的向上方向的單位方向向量,且,以t為參數(shù)求直線的參數(shù)方程
②求曲線C的極坐標(biāo)方程并化為直角坐標(biāo)方程;
(2)設(shè)直線與曲線C交于P,Q兩點,求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù)),曲線C1的方程為ρ(ρ-4sin θ)=12,定點A(6,0),點P是曲線C1上的動點,Q為AP的中點.
(1)求點Q的軌跡C2的直角坐標(biāo)方程;
(2)直線l與直線C2交于A,B兩點,若|AB|≥2,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院為篩查某種疾病,需要檢驗血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗方式:①逐份檢驗,列需要檢驗次;②混合檢驗,將其(且)份血液樣本分別取樣混合在一起檢驗.若檢驗結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這份血液究竟哪幾份為陽性,就要對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為次.假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為.
(1)假設(shè)有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗的方式,求恰好經(jīng)過3次檢驗就能把陽性樣本全部檢驗出來的概率.
(2)現(xiàn)取其中(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.
(i)運用概率統(tǒng)計的知識,若,試求關(guān)于的函數(shù)關(guān)系式;
(ii)若,且采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求的最大值.
參考數(shù)據(jù):,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫(yī)護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個成員檢測呈陽性的概率均為()且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當(dāng)時,最大,則( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com