分析 (I)證明△MNF為等邊三角形,即可求拋物線C的方程;
(II)分類討論,證明F到直線BD的距離等于圓F的半徑,即可得出結(jié)論.
解答 解:(I)拋物線C:y2=2px(p>0)的準(zhǔn)線方程為l′:x=-$\frac{p}{2}$,過(guò)M作MN⊥l′于點(diǎn)N,連接NF,則|MN|=|FM|,
∵∠NMF=∠MFx=60°,∴△MNF為等邊三角形,
∴|NF|=4,∴p=2,
∴拋物線C的方程為y2=4x;
(II)直線l的斜率不存在時(shí),△ABD為等腰三角形,且|AD|=|BD|.
∴圓F與直線BD相切;
直線l的斜率存在時(shí),設(shè)方程為y=k(x-1),代入拋物線方程,得k2x2-(2k2+4)x+k2=0,
設(shè)A(x1,y1),B(x2,y2),則x1x2=1,∴x1=$\frac{1}{{x}_{2}}$,
直線AD的方程為y=$\frac{{y}_{1}}{{x}_{1}+1}$(x+1),即y1x-(x1+1)y+y1=0,
∴R2=$\frac{4{k}^{2}}{{k}^{2}+(\frac{1+{x}_{2}}{1-{x}_{2}})^{2}}$,
直線BD的方程為y2x-(x2+1)y+y2=0,
F到直線BD的距離d,d2=$\frac{4{{y}_{2}}^{2}}{{{y}_{2}}^{2}+({x}_{2}+1)^{2}}$=$\frac{4{k}^{2}}{{k}^{2}+(\frac{1+{x}_{2}}{1-{x}_{2}})^{2}}$,
∴R2=d2,
∴R=d,
∴圓F與直線BD相切,
綜上所述,圓F與直線BD相切.
點(diǎn)評(píng) 本題考查拋物線的方程,考查直線與拋物線的位置關(guān)系,考查直線與圓的位置關(guān)系,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①②④ | B. | ②③ | C. | ①③④ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若l∥β,則α∥β | B. | 若α⊥β,則l⊥m | C. | 若l⊥β,則α⊥β | D. | 若α∥β,則l∥m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-3,3),(-2,2) | B. | [-2,2],[-3,3] | C. | [-3,3],[-2,2] | D. | (-2,2),(-3,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7614 | B. | 6587 | C. | 6359 | D. | 3413 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com