已知離心率為的雙曲線C的中心在坐標原點,焦點F1、F2在x軸上,雙曲線C的右支上一點A使且△F1AF2的面積為1,
(1)求雙曲線C的標準方程;
(2)若直線l:y=kx+m與雙曲線C相交于E、F兩點(E、F不是左右頂點),且以EF為直徑的圓過雙曲線C的右頂點D,求證:直線l過定點,并求出該定點的坐標。
解:(1)由題意,設(shè)雙曲線的標準方程為,
由已知得:,
的面積為1,
,
,
∴b=1,a=2,
∴雙曲線C的標準方程為。
(2)設(shè),
聯(lián)立 ,
顯然,
否則直線l與雙曲線C只有一個交點,
,
,
,
∵以EF為直徑的圓過雙曲線C的右頂點D(2,0),
,
,
,
化簡整理得,
,且均滿足,
時,直線l的方程為y=k(x-2),直線過定點(2,0),與已知矛盾;
時,直線l的方程為,直線過定點(,0);
∴直線l定點,定點坐標為(,0)。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知離心率為的雙曲線C的中心在坐標原點,左、右焦點F1、F2軸上,雙曲線C的右支上一點A使的面積為1。(12分)

求雙曲線C的標準方程;

若直線與雙曲線C相交于E、F兩點(E、F不是左右頂點),且以EF為直徑的圓過雙曲線C的右頂點D。求證:直線過定點,并求出該定點的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣西桂林等四市高三(下)第二次調(diào)研數(shù)學試卷(理科)(解析版) 題型:解答題

已知離心率為的雙曲線C的中心在坐標原點,左、右焦點F1、F2在x軸上,雙曲線C的右支上一點A使且△F1AF2的面積為1.
(1)求雙曲線C的標準方程;
(2)若直線l:y=kx+m與雙曲線C相交于E、F兩點(E、F不是左右頂點),且以EF為直徑的圓過雙曲線C的右頂點D.求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年天津市十二區(qū)縣重點中學高三聯(lián)考數(shù)學試卷2(理科)(解析版) 題型:解答題

已知離心率為的雙曲線的左焦點與拋物線y2=2mx的焦點重合,則實數(shù)m=   

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年天津市十二區(qū)縣重點中學高三聯(lián)考數(shù)學試卷2(文科)(解析版) 題型:解答題

已知離心率為的雙曲線的左焦點與拋物線y2=2mx的焦點重合,則實數(shù)m=   

查看答案和解析>>

同步練習冊答案