3.某校高三某班在一次語文周測中,每位同學(xué)的考試分?jǐn)?shù)都在區(qū)間[100,128]內(nèi),將該班所有同學(xué)的考試分?jǐn)?shù)分為七組:[100,104),[104,108),[108,112),[112,116),[116,120),[120,124),[124,128],繪制出如圖3所示頻率分布直方圖,已知分?jǐn)?shù)低于112分的有18人,則分?jǐn)?shù)不低于120分的人數(shù)為10.

分析 根據(jù)頻率分布直方圖,利用分?jǐn)?shù)低于112分的人數(shù)和對(duì)應(yīng)的頻率/組距與分?jǐn)?shù)不低于120分的人數(shù)與對(duì)應(yīng)的頻率/組距,即可得出所求的結(jié)果.

解答 解:根據(jù)頻率分布直方圖得,
分?jǐn)?shù)低于112分的人數(shù)對(duì)應(yīng)的頻率/組距為0.09,
分?jǐn)?shù)不低于120分的人數(shù)對(duì)應(yīng)的頻率/組距為0.05,
所求的人數(shù)為$\frac{18}{0.09}$×0.05=10(人).
故答案為:10.

點(diǎn)評(píng) 本題考查了頻率分布直方圖的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知${log_a}^{\frac{1}{3}}<1$,那么a的取值范圍是( 。
A.$a>\frac{1}{3}$B.$0<a<\frac{1}{3}$C.$0<a<\frac{1}{3}$或a>1D.$\frac{1}{3}<a<1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.執(zhí)行如圖所示的偽代碼,則輸出的結(jié)果為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a,b∈R+,求證:a3+b3≥a2b+ab2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.定義:如果函數(shù)f(x)在[a,b]上存在x1,x2(a<x1<x2<b)滿足f′(x1)=$\frac{f(b)-f(a)}{b-a}$,f′(x2)=$\frac{f(b)-f(a)}{b-a}$,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”,已知函數(shù)f(x)=2x3-x2+m是[0,2a]上“雙中值函數(shù)”,則實(shí)數(shù)a的取值范圍是$({\frac{1}{8},\frac{1}{4}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ax3+x.
(Ⅰ)若函數(shù)f(x)在x=1處取得極值,求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,函數(shù)g(x)=f′(x)(x2+px+q) (其中f′(x)為函數(shù)f(x)的導(dǎo)數(shù))的圖象關(guān)于直線x=1對(duì)稱,求函數(shù)g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知四棱錐P-ABCD,底面ABCD為菱形,且∠DAB=60°,△PAB是邊長為a的正三角形,且平面PAB⊥平面ABCD,已知點(diǎn)M是PD的中點(diǎn).
(Ⅰ)證明:PB∥平面AMC;
(Ⅱ)求直線BD與平面AMC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列正方體或四面體中,P、Q、R、S分別是所在棱的中點(diǎn),這四個(gè)點(diǎn)不共面的一個(gè)圖形是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,已知$a=3,b=4,c=\sqrt{37}$,求最大角和sinB.

查看答案和解析>>

同步練習(xí)冊(cè)答案