如圖所示,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1,AD的中點(diǎn),那么異面直線(xiàn)OE和FD1所成角的余弦值等于
15
5
15
5
分析:取BC的中點(diǎn)G.連接GC1,則GC1∥FD1,再取GC的中點(diǎn)H,連接HE、OH,則∠OEH為異面直線(xiàn)所成的角,在△OEH中,利用余弦定理可得結(jié)論.
解答:解:取BC的中點(diǎn)G.連接GC1,則GC1∥FD1,再取GC的中點(diǎn)H,連接HE、OH,則

∵E是CC1的中點(diǎn),∴GC1∥EH
∴∠OEH為異面直線(xiàn)所成的角.
在△OEH中,OE=
3
,HE=
5
2
,OH=
5
2

由余弦定理,可得cos∠OEH=
OE2+EH2-OH2
2OE•EH
=
3
2•
3
5
2
=
15
5

故答案為:
15
5
點(diǎn)評(píng):本題考查異面直線(xiàn)所成的角,考查余弦定理的運(yùn)用,解題的關(guān)鍵是作出異面直線(xiàn)所成的角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為DD1、DB的中點(diǎn).
(Ⅰ)求證:EF∥平面ABC1D1;
(Ⅱ)求證:EF⊥B1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

17、如圖所示,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為DD1,DB的中點(diǎn)
(1)求證:EF∥平面ABC1D1; 
(2)求二面角B1-EF-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在棱長(zhǎng)為2的正方體中,E、F分別為DD1、BD的中點(diǎn).  
(1)求證:EF∥面ABC1D1
(2)求證EF∥BD1
(3)求三棱錐VB1-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點(diǎn).
(I)求證:EF⊥B1C;
(II)求二面角E-FC-D的正切值;
(III)求三棱錐F-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•虹口區(qū)三模)如圖所示,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點(diǎn).
(Ⅰ)求證:CF⊥B1E;
(Ⅱ)求三棱錐VB1-EFC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案