已知函數(shù)f(x)=loga(ax-1)(a>0,a≠1).
(1)求函數(shù)f(x)的定義域;
(2)討論函數(shù)f(x)的單調(diào)性.
分析:(1)由ax-1>0,得ax>1 下面分類討論:當a>1時,x>0;當0<a<1時,x<0即可求得f(x)的定義域;
(2)先對a值進行分類討論:當a>1時,當0<a<1時,再任取x1、x2屬于集合范圍之內(nèi),結(jié)合函數(shù)的單調(diào)性的定義討論函數(shù)f(x)的單調(diào)性.
解答:解:(1)由ax-1>0,得ax>1.(1分)
當a>1時,x>0;(2分)
當0<a<1時,x<0.(3分)
所以f(x)的定義域是當a>1時,x∈(0,+∞);當0<a<1時,x∈(-∞,0).(4分)
(2)當a>1時,任取x1、x2∈(0,+∞),且x1<x2,(5分)
ax1ax2,所以ax1-1<ax2-1.(6分)
因為a>1,所以loga(ax1-1)<loga(ax2-1),即f(x1)<f(x2).(8分)
故當a>1時,f(x)在(0,+∞)上是增函數(shù).(9分)
當0<a<1時,任取x1、x2∈(-∞,0),且x1<x2,(10分)
ax1ax2,所以ax1-1>ax2-1.(11分)
因為0<a<1,所以loga(ax1-1)<loga(ax2-1),即f(x1)<f(x2).(13分)
故當0<a<1時,f(x)在(-∞,0)上也是增函數(shù).(14分)
點評:本小題主要考查函數(shù)單調(diào)性的應(yīng)用、對數(shù)函數(shù)的定義域、不等式的解法等基礎(chǔ)知識,考查運算求解能力與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案