極坐標(biāo)系的極點(diǎn)是直角坐標(biāo)系的原點(diǎn),極軸為軸正半軸.已知曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為(其中為參數(shù))
(1)求曲線的直角坐標(biāo)方程和曲線的普通方程;
(2)判斷曲線和曲線的位置關(guān)系;若曲線和曲線相交,求出弦長(zhǎng).
(1),;(2)

試題分析:(1)利用極坐標(biāo)系中點(diǎn)轉(zhuǎn)化為直角坐標(biāo)系中的點(diǎn)的方法可求得C1:,C2: ;(2)利用點(diǎn)到直線的距離公式可求得d==,然后再求弦長(zhǎng)
試題解析:(1)由,所以, 
即曲線         3分
得,,     5分
即曲線      6分;
(2)由(1)得,圓的圓心為(2,0),半徑為2,             7分
圓心到直線的距離為           8分
所以曲線和曲線的相交                      9分
所求弦長(zhǎng)為:              13分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,以為極點(diǎn),軸非負(fù)半軸為極軸建立坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為: 為參數(shù)),兩曲線相交于兩點(diǎn). 求:
(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,已知點(diǎn)的直角坐標(biāo)為,點(diǎn)的極坐標(biāo)為,若直線過(guò)點(diǎn),且傾斜角為,圓為 圓心、為半徑.
(1)求直線的參數(shù)方程和圓的極坐標(biāo)方程;  
(2)試判定直線和圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知極坐標(biāo)的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的正半軸重合,且長(zhǎng)度單位相同.直線的極坐標(biāo)方程為:,點(diǎn),參數(shù)
(Ⅰ)求點(diǎn)軌跡的直角坐標(biāo)方程;(Ⅱ)求點(diǎn)到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

以下的極坐標(biāo)方程表示直線的是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在極坐標(biāo)系中與圓相切的一條直線的方程為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)M(ρ1,θ1),N(ρ2,θ2)兩點(diǎn)的極坐標(biāo)同時(shí)滿足下列關(guān)系:ρ12=0,θ12=0,則M,N兩點(diǎn)(位置關(guān)系)關(guān)于______對(duì)稱(chēng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

.直線θ=-被曲線ρ=cos(θ+)所截得的弦的弦長(zhǎng)為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2).(坐標(biāo)系與參數(shù)方程選做題)若以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,則線段的極坐標(biāo)為( )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案