【題目】在直角坐標(biāo)系 中,曲線 的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線 的極坐標(biāo)方程為 .

1)求直線和曲線的普通方程;

2)已知點(diǎn),且直線和曲線交于兩點(diǎn),求 的值

【答案】(1),;(2

【解析】

1)消去曲線C中的參數(shù)可得C的普通方程,利用極坐標(biāo)與直角坐標(biāo)的互化公式可得直線的普通方程.

2)由直線的普通方程可知直線過(guò)P,寫出直線的參數(shù)方程,與曲線C的普通方程聯(lián)立,利用直線參數(shù)的幾何意義及韋達(dá)定理可得結(jié)果.

1)因?yàn)榍 的參數(shù)方程為 為參數(shù)),所以消去參數(shù),

得曲線的普通方程為

因?yàn)橹本 的極坐標(biāo)方程為 ,即 ,

所以直線的普通方程為

2)因?yàn)橹本經(jīng)過(guò)點(diǎn) ,所以得到直線的參數(shù)方程為 為參數(shù))

設(shè) ,

把直線的參數(shù)方程代入曲線的普通方程,得,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近來(lái)天氣變化無(wú)常,陡然升溫、降溫幅度大于的天氣現(xiàn)象出現(xiàn)增多.陡然降溫幅度大于容易引起幼兒傷風(fēng)感冒疾病.為了解傷風(fēng)感冒疾病是否與性別有關(guān),在某婦幼保健院隨機(jī)對(duì)人院的名幼兒進(jìn)行調(diào)查,得到了如下的列聯(lián)表,若在全部名幼兒中隨機(jī)抽取人,抽到患傷風(fēng)感冒疾病的幼兒的概率為,

(1)請(qǐng)將下面的列聯(lián)表補(bǔ)充完整;

患傷風(fēng)感冒疾病

不患傷風(fēng)感冒疾病

合計(jì)

25

20

合計(jì)

100

(2)能否在犯錯(cuò)誤的概率不超過(guò)的情況下認(rèn)為患傷風(fēng)感冒疾病與性別有關(guān)?說(shuō)明你的理由;

(3)已知在患傷風(fēng)感冒疾病的名女性幼兒中,名又患黃痘病.現(xiàn)在從患傷風(fēng)感冒疾病的名女性中,選出名進(jìn)行其他方面的排查,記選出患黃痘病的女性人數(shù)為,的分布列以及數(shù)學(xué)期望.下面的臨界值表供參考:

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】魯班鎖是中國(guó)傳統(tǒng)的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,十分巧妙.從外觀上看,是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對(duì)稱;六根等長(zhǎng)的正四棱柱分成三組,經(jīng)90°榫卯起來(lái).如圖所示,正四棱柱的高為8,底面正方形的邊長(zhǎng)為1,將這個(gè)魯班鎖放進(jìn)一個(gè)球形容器內(nèi),則該球形容器半徑的最小值為(容器壁的厚度忽略不計(jì))(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定下列四個(gè)命題

若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;

若一條直線和兩個(gè)互相垂直的平面中的一個(gè)平面垂直,那么這條直線一定平行于另一個(gè)平面;

若一條直線和兩個(gè)平行平面中的一個(gè)平面垂直,那么這條直線也和一個(gè)平面垂直;

若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直,

其中,真命題的個(gè)數(shù)是  

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩點(diǎn),若直線上存在四個(gè)點(diǎn),使得是直角三角形,則實(shí)數(shù)的取值范圍是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)取得極小值,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù);.

(1)判斷上的單調(diào)性,并說(shuō)明理由;

(2)求的極值;

(3)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為為參數(shù),.為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

2)已知曲線與曲線交于,兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某銷售公司在當(dāng)?shù)?/span>、兩家超市各有一個(gè)銷售點(diǎn),每日從同一家食品廠一次性購(gòu)進(jìn)一種食品,每件200元,統(tǒng)一零售價(jià)每件300元,兩家超市之間調(diào)配食品不計(jì)費(fèi)用,若進(jìn)貨不足食品廠以每件250元補(bǔ)貨,若銷售有剩余食品廠以每件150回收.現(xiàn)需決策每日購(gòu)進(jìn)食品數(shù)量,為此搜集并整理了兩家超市往年同期各50天的該食品銷售記錄,得到如下數(shù)據(jù):

銷售件數(shù)

8

9

10

11

頻數(shù)

20

40

20

20

以這些數(shù)據(jù)的頻數(shù)代替兩家超市的食品銷售件數(shù)的概率,記表示這兩家超市每日共銷售食品件數(shù),表示銷售公司每日共需購(gòu)進(jìn)食品的件數(shù).

(1)求的分布列;

(2)以銷售食品利潤(rùn)的期望為決策依據(jù),在之中選其一,應(yīng)選哪個(gè)?

查看答案和解析>>

同步練習(xí)冊(cè)答案