【題目】設(shè)函數(shù)f(x)=1+(1+a)x﹣x2﹣x3 , 其中a>0.
(1)討論f(x)在其定義域上的單調(diào)性;
(2)當(dāng)x∈[0,1]時(shí),求f(x)取得最大值和最小值時(shí)的x的值.

【答案】
(1)解:f(x)的定義域?yàn)椋ī仭蓿?∞),f′(x)=1+a﹣2x﹣3x2,

由f′(x)=0,得x1= ,x2= ,x1<x2,

∴由f′(x)<0得x< ,x> ;

由f′(x)>0得 <x<

故f(x)在(﹣∞, )和( ,+∞)單調(diào)遞減,

在( , )上單調(diào)遞增;


(2)解:∵a>0,∴x1<0,x2>0,∵x∈[0,1],當(dāng) 時(shí),即a≥4

①當(dāng)a≥4時(shí),x2≥1,由(Ⅰ)知,f(x)在[0,1]上單調(diào)遞增,∴f(x)在x=0和x=1處分別取得最小值和最大值.

②當(dāng)0<a<4時(shí),x2<1,由(Ⅰ)知,f(x)在[0,x2]單調(diào)遞增,在[x2,1]上單調(diào)遞減,

因此f(x)在x=x2= 處取得最大值,又f(0)=1,f(1)=a,

∴當(dāng)0<a<1時(shí),f(x)在x=1處取得最小值;

當(dāng)a=1時(shí),f(x)在x=0和x=1處取得最小值;

當(dāng)1<a<4時(shí),f(x)在x=0處取得最小值.


【解析】(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性即可;(2)利用(1)的結(jié)論,討論兩根與1的大小關(guān)系,判斷函數(shù)在[0,1]時(shí)的單調(diào)性,得出取最值時(shí)的x的取值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減,以及對(duì)函數(shù)的最大(小)值與導(dǎo)數(shù)的理解,了解求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓經(jīng)過(guò),,三點(diǎn),是線段上的動(dòng)點(diǎn),,是過(guò)點(diǎn)且互相垂直的兩條直線,其中軸于點(diǎn),交圓、兩點(diǎn).

(1)若,求直線的方程;

(2)若是使恒成立的最小正整數(shù),求三角形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的有______

①平均數(shù)不受少數(shù)幾個(gè)極端值的影響,中位數(shù)受樣本中的每一個(gè)數(shù)據(jù)影響;

②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大

③用樣本的頻率分布估計(jì)總體分布的過(guò)程中,樣本容量越大,估計(jì)越準(zhǔn)確.

④向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)不相等的非零向量 ,兩組向量 , , , , , , 均由2個(gè) 和3個(gè) 排列而成,記S= + + + + ,Smin表示S所有可能取值中的最小值.則下列命題正確的是(寫(xiě)出所有正確命題的編號(hào)).
①S有5個(gè)不同的值;
②若 ,則Smin與| |無(wú)關(guān);
③若 ,則Smin與| |無(wú)關(guān);
④若| |>4| |,則Smin>0;
⑤若| |=2| |,Smin=8| |2 , 則 的夾角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生的課外閱讀時(shí)間情況,某學(xué)校隨機(jī)抽取了50人進(jìn)行統(tǒng)計(jì)分析,把這50人每天閱讀的時(shí)間(單位:分鐘)繪制成頻數(shù)分布表,如下表所示:

閱讀時(shí)間

人數(shù)

8

10

12

11

7

2

若把每天閱讀時(shí)間在60分鐘以上(含60分鐘)的同學(xué)稱為“閱讀達(dá)人”,根據(jù)統(tǒng)計(jì)結(jié)果中男女生閱讀達(dá)人的數(shù)據(jù),制作成如圖所示的等高條形圖.

(1)根據(jù)抽樣結(jié)果估計(jì)該校學(xué)生的每天平均閱讀時(shí)間(同一組數(shù)據(jù)用該區(qū)間的終點(diǎn)值作為代表);

(2)根據(jù)已知條件完成下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為“閱讀達(dá)人”跟性別有關(guān)?

男生

女生

總計(jì)

閱讀達(dá)人

非閱讀達(dá)人

總計(jì)

附:參考公式,其中.

臨界值表:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,過(guò)A1、C、D三點(diǎn)的平面記為α,BB1與α的交點(diǎn)為Q.

(1)證明:Q為BB1的中點(diǎn);
(2)求此四棱柱被平面α所分成上下兩部分的體積之比;
(3)若AA1=4,CD=2,梯形ABCD的面積為6,求平面α與底面ABCD所成二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)若方程上有兩個(gè)不等實(shí)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且a2+b2+ ab=c2
(1)求C;
(2)設(shè)cosAcosB= , = ,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下列三個(gè)命題:
①若一個(gè)球的半徑縮小到原來(lái)的 ,則其體積縮小到原來(lái)的
②若兩組數(shù)據(jù)的平均數(shù)相等,則它們的標(biāo)準(zhǔn)差也相等;
③直線x+y+1=0與圓 相切.
其中真命題的序號(hào)是(
A.①②③
B.①②
C.①③
D.②③

查看答案和解析>>

同步練習(xí)冊(cè)答案