已知
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的最大值,并指出此時(shí)的值.
(3)求函數(shù)的單調(diào)增區(qū)間
(1);(2),(3).
解析試題分析:解題思路:先將化為的形式,再利用的圖像與性質(zhì)求周期、最值、單調(diào)區(qū)間.規(guī)律總結(jié):凡是涉及三角函數(shù)的周期、定義域、值域、單調(diào)性、對(duì)稱(chēng)性等性質(zhì),一般思路是:利用三角恒等變換轉(zhuǎn)化為的形式.
試題解析:
⑴函數(shù)的最小正周期是
⑵當(dāng)時(shí), 取得最大值,
最大值為4 .
此時(shí),即Z.
(3)的單調(diào)增區(qū)間為.
考點(diǎn):1.三角恒等變換;2.三角函數(shù)的圖像與性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的一系列對(duì)應(yīng)值如下表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),.
(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;
(2)已知中的三個(gè)內(nèi)角所對(duì)的邊分別為,若銳角滿(mǎn)足,且,,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=2sincos+cos.
(1)求函數(shù)f(x)的最小正周期及最值;
(2)令g(x)=f,判斷函數(shù)g(x)的奇偶性,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的周期;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)若時(shí),的最小值為– 2 ,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的圖像關(guān)于直線對(duì)稱(chēng),且圖像上相鄰兩個(gè)最高點(diǎn)的距離為.
(1)求和的值;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)圖象的一部分如圖所示.
(1)求函數(shù)的解析式;
(2)當(dāng)時(shí),求函數(shù)的最大值與最小值及相應(yīng)的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,點(diǎn)O為做簡(jiǎn)諧運(yùn)動(dòng)的物體的平衡位置,取向右的方向?yàn)槲矬w位移的正方向,若已知振幅為3 cm,周期為3 s,且物體向右運(yùn)動(dòng)到A點(diǎn)(距平衡位置最遠(yuǎn)處)開(kāi)始計(jì)時(shí).(1)求物體離開(kāi)平衡位置的位移x(cm)和時(shí)間t(s)之間的函數(shù)關(guān)系式;(2)求該物體在t=5 s時(shí)的位置.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com