.設(shè)點P是橢圓
上的一點,點M、N分別是兩圓:
和
上的點,則的最小值、最大值分別為( )
解:依題意,橢圓
的焦點分別是兩圓(
和
的圓心,
所以(|PM|+|PN|)max=2×3+2=8,
(|PM|+|PN|)min=2×3-2=4,
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)已知橢圓
過點
,且離心率為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)
為橢圓
的左、右頂點,直線
與
軸交于點
,點
是橢圓
上異于
的動點,直線
分別交直線
于
兩點.證明:
恒為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
已知橢圓
.
與
有相同的離心率,過點
的直線
與
,
依次交于A,C,D,B四點(如圖).當(dāng)直線
過
的上頂點時, 直線
的傾斜角為
.
(1)求橢圓
的方程;
(2)求證:
;
(3)若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的左、右焦點分別為
,離心率為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)直線
與橢圓
交于
兩點.若原點
在以線段
為直徑的圓內(nèi),
求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
a,
b為大于1的正數(shù),并且
,如果
的最小值為
m,則滿足
的整點
的個數(shù)為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)設(shè)橢圓
:
過點(0,4),離心率為
.
(1)求
的方程;
(2)求過點(3,0)且斜率為
的直線被
所截線段的中點坐標.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在直角坐標系xOy中,已知中心在原點,離心率為
的橢圓E的一個焦點為圓C:x
2+y
2-4x+2=0的圓心.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)P是橢圓E上一點,過P作兩條斜率之積為
的直線l
1,l
2.當(dāng)直線l
1,l
2都與圓C相切時,求P的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若橢圓
的左右焦點分別為
,線段
被拋物線
的焦點分成5:3兩段,則此橢圓的離心率為
查看答案和解析>>