如圖,P是Rt△ABC的斜邊BC上異于B、C的一點,若過點P作直線l截△ABC,使截得的三角形與△ABC相似,則直線l共有(  )
分析:過點P作直線與另一邊相交,使所得的三角形與原三角形有一個公共角,只要再作一個直角就可以.
解答:解:∵截得的三角形與△ABC相似,
∴過點P作AB的垂線,或作AC的垂線,或作BC的垂線,所得三角形滿足題意
∴過點P作直線l共有三條,
故選C.
點評:本題考查三角形相似的判定,考查合情推理,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)如圖,D是Rt△ABC的斜邊AB上的中點,E和F分別在邊AC和BC上,且ED⊥FD,求證:EF2=AE2+BF2(EF2表示線段EF長度的平方)(嘗試用向量法證明)
(2)已知函數(shù)f(x)=x3-3x圖象上一點P(1,-2),過點P作直線l與y=f(x)圖象相切,但切點異于點P,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:安徽省淮南市二中2012屆高三第三次月考數(shù)學理科試題 題型:044

(1)如圖,D是Rt△ABC的斜邊AB上的中點,E和F分別在邊AC和BC上,且ED⊥FD,求證:EF2=AE2+BF2(EF2表示線段EF長度的平方)(嘗試用向量法證明)

(2)已知函數(shù)f(x)=x3-3x圖像上一點P(1,-2),過點P作直線l與y=f(x)圖像相切,但切點異于點P,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)如圖,D是Rt△ABC的斜邊AB上的中點,E和F分別在邊AC和BC上,且ED⊥FD,求證:EF2=AE2+BF2(EF2表示線段EF長度的平方)(嘗試用向量法證明)
(2)已知函數(shù)f(x)=x3-3x圖象上一點P(1,-2),過點P作直線l與y=f(x)圖象相切,但切點異于點P,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省淮南二中高三(上)第三次月考數(shù)學試卷(理科)(解析版) 題型:解答題

(1)如圖,D是Rt△ABC的斜邊AB上的中點,E和F分別在邊AC和BC上,且ED⊥FD,求證:EF2=AE2+BF2(EF2表示線段EF長度的平方)(嘗試用向量法證明)
(2)已知函數(shù)f(x)=x3-3x圖象上一點P(1,-2),過點P作直線l與y=f(x)圖象相切,但切點異于點P,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省淮南二中高三(上)第三次月考數(shù)學試卷(理科)(解析版) 題型:解答題

(1)如圖,D是Rt△ABC的斜邊AB上的中點,E和F分別在邊AC和BC上,且ED⊥FD,求證:EF2=AE2+BF2(EF2表示線段EF長度的平方)(嘗試用向量法證明)
(2)已知函數(shù)f(x)=x3-3x圖象上一點P(1,-2),過點P作直線l與y=f(x)圖象相切,但切點異于點P,求直線l的方程.

查看答案和解析>>

同步練習冊答案