7.實(shí)數(shù)x,y滿足$|x+1|≤y≤-\frac{1}{2}x+1$時(shí),目標(biāo)函數(shù)z=mx+y的最大值等于5,則實(shí)數(shù)m的值為(  )
A.-1B.$-\frac{1}{2}$C.2D.5

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義進(jìn)行求解即可.

解答 解:由z=mx+y,得y=-mx+z,
∵標(biāo)函數(shù)z=mx+y的最大值等于5,
∴直線y=-mx+z最大截距是5,即y=-mx+5,
則直線y=-mx+5過(guò)定點(diǎn)(0,5),
要使y=-mx+z最大截距是5,
則必有直線y=-mx+z的斜率-m>0,即m<0,
且直線y=-mx+5過(guò)點(diǎn)B,
由$\left\{\begin{array}{l}{y=-\frac{1}{2}x+1}\\{y=-(x+1)}\end{array}\right.$得$\left\{\begin{array}{l}{x=-4}\\{y=3}\end{array}\right.$,即B(-4,3),代入y=-mx+5
得4m+5=3,得m=$-\frac{1}{2}$,
故選:B.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)目標(biāo)函數(shù)的幾何意義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知F1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左,右焦,D,E分是橢圓C的上頂點(diǎn)和右頂點(diǎn),且S${\;}_{△DE{F}_{2}}$=$\frac{\sqrt{3}}{2}$,離心率e=$\frac{1}{2}$
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)經(jīng)過(guò)F2的直線l與橢圓C相交于A,B兩點(diǎn),求S△AOB的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)不等式組$\left\{\begin{array}{l}{3x+y-10≥0}\\{x+3y-6≤0}\end{array}\right.$,表示的平面區(qū)域?yàn)镈,若函數(shù)y=logax(a>1)的圖象上存在區(qū)域D上的點(diǎn),則實(shí)數(shù)a的取值范圍是[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.《九章算術(shù)》“少?gòu)V”算法中有這樣一個(gè)數(shù)的序列:列出“全步”(整數(shù)部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分?jǐn)?shù)進(jìn)行通分約簡(jiǎn),又用最下面的分母去遍乘諸(未通者)分子和以通之?dāng)?shù),逐個(gè)照此同樣方法,直至全部為整數(shù),例如:n=2及n=3時(shí),如圖,記Sn為每個(gè)序列中最后一列數(shù)之和,則S7為( 。
A.1089B.680C.840D.2520

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.工商局對(duì)超市某種食品抽查,這種食品每箱裝有6袋,經(jīng)檢測(cè),某箱中每袋的重量(單位:克)如以下莖葉圖所示.則這箱食品一袋的平均重量和重量的中位數(shù)分別為( 。
A.249,248B.249,249C.248,249D.248,249

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若(x-i)i=y+2i,x,y∈R,其中i為虛數(shù)單位,則復(fù)數(shù)x+yi=( 。
A.2+iB.-2+iC.1-2iD.1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知向量$\overrightarrow{AP}=({1,\sqrt{3}}),\overrightarrow{PB}=({-\sqrt{3},1})$,則向量$\overrightarrow{AP}$與$\overrightarrow{AB}$的夾角為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在某城市氣象部門的數(shù)據(jù)中,隨機(jī)抽取了100天的空氣質(zhì)量指數(shù)的監(jiān)測(cè)數(shù)據(jù)如表:
空氣質(zhì)量指數(shù)t(0,50](50,100](100,150](150,200](200,300](300,+∞)
質(zhì)量等級(jí)優(yōu)輕微污染輕度污染中度污染嚴(yán)重污染
天數(shù)K52322251510
(1)在該城市各醫(yī)院每天收治上呼吸道病癥總?cè)藬?shù)y與當(dāng)天的空氣質(zhì)量t(t取整數(shù))存在如下關(guān)系y=$\left\{\begin{array}{l}t,t≤100\\ 2t-100,100<t≤300\end{array}$,且當(dāng)t>300時(shí),y>500估計(jì)在某一醫(yī)院收治此類病癥人數(shù)超過(guò)200人的概率;
(2)若在(1)中,當(dāng)t>300時(shí),y與t的關(guān)系擬合于曲線$\hat y=a+blnt$,現(xiàn)已取出了10對(duì)樣本數(shù)據(jù)(ti,yi)(i=1,2,3,…,10),且$\sum_{i=1}^{10}{ln{t_i}}=70,\sum_{i=1}^{10}{y_i}=6000,\sum_{i=1}^{10}{{y_i}ln{t_i}}$=42500,${\sum_{i=1}^{10}{({ln{t_i}})}^2}$=500,求擬合曲線方程.
(附:線性回歸方程$\widehat{y}$=a+bx中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-{n}_{x}^{-}{•}_{y}^{-}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-{{n}_{x}^{-}}^{2}}$,a=$\widehat{y}$-b$\widehat{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知定義在[-2,2]上的函數(shù)f(x)滿足f(x)+f(-x)=0,且$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,若f(1-t)+f(1-t2)<0,則實(shí)數(shù)t的取值范圍為[-1,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案