精英家教網 > 高中數學 > 題目詳情

攀巖運動是一項刺激而危險的運動,如圖(1)在某次攀巖活動中,兩名運動員在如圖所在位置,為確保運動員的安全,地面救援者應時刻注意兩人離地面的距離,以備發(fā)生危險時進行及時救援.為了方便測量和計算,畫出示意圖,如圖(2)所示,點A,C分別為兩名攀巖者所在位置,點B為山的拐角處,且斜坡AB的坡角為θ,點D為山腳,某人在地面上的點E處測得A,B,C的仰角分別為α,β,γ,ED=a,求:
(Ⅰ)點B,D間的距離及點C,D間的距離;
(Ⅱ)在點A處攀巖者距地面的距離h.

解:(I)根據題意,得∠CED=γ,∠ABE=β,∠ADE=α
在Rt△CDE中,tanγ=,得CD=atanγ
在Rt△BED中,tanβ=,得BD=atanβ
綜上所述,得點B,D間的距離為atanγ;點C,D間的距離為atanβ;
(II)過A作AH⊥ED于H,則
Rt△AEH中,AH=h,得sinα=,所以AE=
同理,可得BE=
在△ABE中,∠AEB=α-β,∠EAB=π-(α+θ)
由正弦定理,得=,即AE==
∴h=AEsinα=
分析:(I)分別在Rt△CDE和Rt△BED中,利用正切在直角三角形中的定義,可得CD=atanγ且BD=atanβ,即得所求距離.
(II)過A作AH⊥ED于H,則Rt△AEH中算出AE=,同理BE=,最后在三角形ABE中利用正弦定理,可算出
點A處攀巖者距地面的距離h.
點評:本題給出實際問題,求點與點之間的距離并求攀巖處距離地面的距離,著重考查了直角三角形三角函數的定義和利用正弦定理解三角形的應用等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網攀巖運動是一項刺激而危險的運動,如圖(1)在某次攀巖活動中,兩名運動員在如圖所在位置,為確保運動員的安全,地面救援者應時刻注意兩人離地面的距離,以備發(fā)生危險時進行及時救援.為了方便測量和計算,現如圖(2)A,C分別為兩名攀巖者所在位置,B為山的拐角處,且斜坡AB的坡角為θ,D為山腳,某人在E處測得A,B,C的仰角分別為α,β,γ,ED=a,
(1)求:BD間的距離及CD間的距離;
(2)求證:在A處攀巖者距地面的距離h=
asinαsin(θ+β)cosβsin(α+θ)

查看答案和解析>>

科目:高中數學 來源: 題型:

攀巖運動是一項刺激而危險的運動,如圖(1)在某次攀巖活動中,兩名運動員在如圖所在位置,為確保運動員的安全,地面救援者應時刻注意兩人離地面的距離,以備發(fā)生危險時進行及時救援.為了方便測量和計算,現如圖(2)A,C分別為兩名攀巖者所在位置,B為山的拐角處,且斜坡AB的坡角為θ,D為山腳,某人在E處測得A,B,C的仰角分別為α,β,γ,ED=α,求:
(1)BD間的距離及CD間的距離;
(2)在A處攀巖者距地面的距離h.

查看答案和解析>>

科目:高中數學 來源: 題型:

攀巖運動是一項刺激而危險的運動,如圖(1)在某次攀巖活動中,兩名運動員在如圖所在位置,為確保運動員的安全,地面救援者應時刻注意兩人離地面的距離,以備發(fā)生危險時進行及時救援.為了方便測量和計算,畫出示意圖,如圖(2)所示,點A,C分別為兩名攀巖者所在位置,點B為山的拐角處,且斜坡AB的坡角為θ,點D為山腳,某人在地面上的點E處測得A,B,C的仰角分別為α,β,γ,ED=a,求:
(Ⅰ)點B,D間的距離及點C,D間的距離;
(Ⅱ)在點A處攀巖者距地面的距離h.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分10分)

攀巖運動是一項刺激而危險的運動,如圖(1)在某次攀巖活動中,兩名運動員在如圖所在位置,為確保運動員的安全,地面救援者應時刻注意兩人離地面的的距離,以備發(fā)生危險時進行及時救援.為了方便測量和計算,現如圖(2)分別為兩名攀巖者所在位置,為山的拐角處,且斜坡的坡角為為山腳,某人在處測得的仰角分別為,

(1)求:間的距離及間的距離;

(2)求證:在處攀巖者距地面的距離

 

查看答案和解析>>

科目:高中數學 來源:2014屆福建省高二上學期期中考試理科數學試卷(解析版) 題型:解答題

(本小題滿分12分)

攀巖運動是一項刺激而危險的運動,如圖(1)在某次攀巖活動中,兩名運動員在如圖所在位置,為確保運動員的安全,地面救援者應時刻注意兩人離地面的距離,以備發(fā)生危險時進行及時救援. 為了方便測量和計算,畫出示意圖,如圖(2)所示,點分別為兩名攀巖者所在位置,點為山的拐角處,且斜坡AB的坡角為,點為山腳,某人在地面上的點處測得的仰角分別為, ,

求:(Ⅰ)點間的距離及點間的距離;

(Ⅱ)在點處攀巖者距地面的距離.

 

查看答案和解析>>

同步練習冊答案