在直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn),直線的極坐標(biāo)方程為.
(1)判斷點(diǎn)與直線l的位置關(guān)系,說明理由;
(2)設(shè)直線與曲線C的兩個交點(diǎn)為A、B,求的值.
(1)點(diǎn)在直線上;(2)8.

試題分析:(1)根據(jù)極坐標(biāo)方程求出l的直角坐標(biāo)系方程,將點(diǎn)P代入,即可得到結(jié)果;
(2)求出曲線C的直角坐標(biāo)方程,將直線l的參數(shù)方程代入曲線C的方程,利用韋達(dá)定理即可求出結(jié)果.
解:(1)直線
所以直線的直角坐標(biāo)方程為,故點(diǎn)在直線上.     5分
(2)直線的參數(shù)方程為為參數(shù)),
曲線C的直角坐標(biāo)方程為
將直線的參數(shù)方程代入曲線C的直角坐標(biāo)方程,
  9分
設(shè)兩根為   12分  .
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,曲線的參數(shù)方程是:是參數(shù)).
(1)將曲線和曲線的方程轉(zhuǎn)化為普通方程;
(2)若曲線與曲線相交于兩點(diǎn),求證;
(3)設(shè)直線交于兩點(diǎn),且為常數(shù)),過弦的中點(diǎn)作平行于軸的直線交曲線于點(diǎn),求證:的面積是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

極坐標(biāo)方程表示的曲線為( )
A.極點(diǎn)B.極軸C.一條直線D.兩條相交直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸與軸的非負(fù)半軸重合.若直線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù),且,則直線與曲線的交點(diǎn)的直角坐標(biāo)為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線為參數(shù)),曲線,將的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)縮短為原來的得到曲線.
(1)求曲線的普通方程,曲線的直角坐標(biāo)方程;
(2)若點(diǎn)P為曲線上的任意一點(diǎn),Q為曲線上的任意一點(diǎn),求線段的最小值,并求此時的P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,點(diǎn)(2,)到直線的距離等于    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C的極坐標(biāo)方程為ρ=6sinθ,以極點(diǎn)為原點(diǎn)、極軸為x軸非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)),求直線l被曲線C截得的線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是半徑為1的圓的一條直徑,C是此圓上任意一點(diǎn),作射線AC,在AC上存在點(diǎn)P,使得AP·AC=1,以A為極點(diǎn),射線AB為極軸建立極坐標(biāo)系.

(1)求以AB為直徑的圓的極坐標(biāo)方程;
(2)求動點(diǎn)P的軌跡的極坐標(biāo)方程;
(3)求點(diǎn)P的軌跡在圓內(nèi)部分的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,圓的圓心到直線 的距離是          

查看答案和解析>>

同步練習(xí)冊答案