【題目】整數(shù)集就像一片浩瀚無邊的海洋,充滿了無盡的奧秘.古希臘數(shù)學(xué)家畢達(dá)哥拉斯發(fā)現(xiàn)220和284具有如下性質(zhì):220的所有真因數(shù)之和恰好等于284,同時(shí)284的所有真因數(shù)之和也等于220,他把具有這種性質(zhì)的兩個(gè)整數(shù)叫做一對“親和數(shù)”,“親和數(shù)”的發(fā)現(xiàn)吸引了古今中外無數(shù)數(shù)學(xué)愛好者的研究熱潮.已知220和284,1184和1210,2924和2620是3對“親和數(shù)”,把這六個(gè)數(shù)隨機(jī)分成兩組,一組2個(gè)數(shù),另一組4個(gè)數(shù),則220和284在同一組的概率為( )
A.B.C.D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的離心率為,且橢圓C的中心O關(guān)于直線的對稱點(diǎn)落在直線上.
(1)求橢圓C的方程;
(2)設(shè)P,M、N是橢圓C上關(guān)于x軸對稱的任意兩點(diǎn),連接交橢圓C于另一點(diǎn)E,求直線的斜率取值范圍,并證明直線與x軸相交于定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】BMI指數(shù)(身體質(zhì)量指數(shù),英文為BodyMassIndex,簡稱BMI)是衡量人體胖瘦程度的一個(gè)標(biāo)準(zhǔn),BMI=體重(kg)/身高(m)的平方.根據(jù)中國肥胖問題工作組標(biāo)準(zhǔn),當(dāng)BMI≥28時(shí)為肥胖.某地區(qū)隨機(jī)調(diào)查了1200名35歲以上成人的身體健康狀況,其中有200名高血壓患者,被調(diào)查者的頻率分布直方圖如下:
(1)求被調(diào)查者中肥胖人群的BMI平均值;
(2)填寫下面列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為35歲以上成人患高血壓與肥胖有關(guān).
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
肥胖 | 不肥胖 | 合計(jì) | |
高血壓 | |||
非高血壓 | |||
合計(jì) |
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四面體ABCD中,△ABC和△BCD均是邊長為1的等邊三角形,已知四面體ABCD的四個(gè)頂點(diǎn)都在同一球面上,且AD是該球的直徑,則四面體ABCD的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為了研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組: ,分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(1)根據(jù)“25周歲以上組”的頻率分布直方圖,求25周歲以上組工人日平均生產(chǎn)件數(shù)的中位數(shù)的估計(jì)值(四舍五入保留整數(shù));
(2)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率;
(3)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成列聯(lián)表,并判斷是否有 的把握認(rèn)為“生產(chǎn)能手與工人所在年齡組有關(guān)”?
生產(chǎn)能手 | 非生產(chǎn)能手 | 合計(jì) | |
25周歲以上組 | |||
25周歲以下組 | |||
合計(jì) |
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年初,新型冠狀病毒肺炎(COVID-19)在我國爆發(fā),全國人民團(tuán)結(jié)一心、積極抗疫,為全世界疫情防控爭取了寶貴的時(shí)間,積累了豐富的經(jīng)驗(yàn).某研究小組為了研究某城市肺炎感染人數(shù)的增長情況,在官方網(wǎng)站.上搜集了7組數(shù)據(jù),并依據(jù)數(shù)據(jù)制成如下散點(diǎn)圖:
圖中表示日期代號(hào)(例如2月1日記為“1”,2月2日記為“2”,以此類推).通過對散點(diǎn)圖的分析,結(jié)合病毒傳播的相關(guān)知識(shí),該研究小組決定用指數(shù)型函數(shù)模型來擬合,為求出關(guān)于的回歸方程,可令,則與線性相關(guān).初步整理后,得到如下數(shù)據(jù):,.
(1)根據(jù)所給數(shù)據(jù),求出關(guān)于的線性回歸方程:
(2)求關(guān)于的回歸方程;若防控不當(dāng),請問為何值時(shí),累計(jì)確診人數(shù)的預(yù)報(bào)值將超過1000人?(參考數(shù)據(jù):,結(jié)果保留整數(shù))
附:對于一組數(shù)據(jù),其線性回歸方程的斜率和截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會(huì)品嘗的食品,傳說這是為了紀(jì)念戰(zhàn)國時(shí)期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個(gè)邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市先后采用甲、乙兩種方案治理空氣污染各一年,各自隨機(jī)抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的檢測數(shù)據(jù)進(jìn)行分析,若空氣質(zhì)量指數(shù)值在[0,300]內(nèi)為合格,否則為不合格.表1是甲方案檢測數(shù)據(jù)樣本的頻數(shù)分布表,如圖是乙方案檢測數(shù)據(jù)樣本的頻率分布直方圖.
表1:
API值 | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | 大于300 |
天數(shù) | 9 | 13 | 19 | 30 | 14 | 11 | 4 |
(1)將頻率視為概率,求乙方案樣本的頻率分布直方圖中的值,以及乙方案樣本的空氣質(zhì)量不合格天數(shù);
(2)求乙方案樣木的中位數(shù);
(3)填寫下面2×2列聯(lián)表(如表2),并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為該城市的空氣質(zhì)量指數(shù)值與兩種方案的選擇有關(guān).
表2:
甲方案 | 乙方案 | 合計(jì) | |
合格天數(shù) | _______ | _______ | _______ |
不合格天數(shù) | _______ | _______ | _______ |
合計(jì) | _______ | _______ | _______ |
附:
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com