【題目】已知二次函數(shù)的對稱軸為,

(1)求函數(shù)的最小值及取得最小值時的值;

(2)試確定的取值范圍,使至少有一個實根;

(3)若,存在實數(shù),對任意,使恒成立求實數(shù)的取

值范圍

【答案】(1),此時(2);(3)

【解析】

試題分析:(1)由,則,利用基本不等式,即可求解函數(shù)的最小值及取得最小值時的值;(2)根據(jù)二次函數(shù)的性質(zhì),可得,使得,即可求解的取值范圍;(3)由已知對任意恒成立,,轉(zhuǎn)化為存在使成立,分類討論即可求解實數(shù)的取值范圍

試題解析:(1),

當且僅當,成立,即,此時

(2)的對稱軸為,

至少有一實根,至少有一實根

的圖象在上至少有一個交點,

,

,,的取值范圍為

(3) ,

由已知存在實數(shù),對任意恒成立,

,

轉(zhuǎn)化為存在使成立,

的對稱軸為,

,,

,

,

綜上,的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 ,圓 的圓心在橢圓上,點到橢圓的右焦點的距離為.

(1)求橢圓的標準方程;

(2)過點作互相垂直的兩條直線,且交橢圓兩點,直線交圓 兩點,且的中點,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(改編)已知數(shù)列滿足, , .

(1)若, ,求實數(shù)的取值范圍;

(2)設(shè)數(shù)列滿足: ,設(shè),若, ,求的取值范圍;

(3)若成公比的等比數(shù)列,且,求正整數(shù)的最大值,以及取最大值時相應(yīng)數(shù)列的公比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[5060),[6070),[7080),[8090),[90,100]

1)求圖中a的值;

2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分;

3)若這100名學(xué)生語文成績某些分數(shù)段的人數(shù)(x)與數(shù)學(xué)成績相應(yīng)分數(shù)段的人數(shù)(y)之比如表所示,求數(shù)學(xué)成績在[50,90)之外的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M過兩點A(1,﹣1),B(﹣1,1),且圓心M在直線x+y﹣2=0上.

(1)求圓M的方程.

(2)設(shè)P是直線3x+4y+8=0上的動點,PC、PD是圓M的兩條切線,C、D為切點,求四邊形PCMD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷對錯.

1)若a>b,則ac>bc一定成立.______

2)若ac>bd,則a>bc>d.______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點法”畫函數(shù)fx)=Asin(ωx+φ)(ω>0,|φ|<)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:

ωx

0

π

x

Asin(ωx+φ)

0

3

0

-3

0

(1)請將上表數(shù)據(jù)補充完整,填寫在答題卡上相應(yīng)位置,并直接寫出函數(shù)fx)的解析式;

(2)令g(x)=f (x+)-,當x∈[ ]時,恒有不等式g(x)-a-3<0成立,求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列滿足,

(I)求數(shù)列的通項公式;

(II)求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖像是由函數(shù)的圖像經(jīng)如下變換得到:先將圖像上所有點的縱坐標伸長到原來的2倍橫坐標不變,再將所得到的圖像向右平移個單位長度.

求函數(shù)的解析式,并求其圖像的對稱軸方程;

已知關(guān)于的方程內(nèi)有兩個不同的解

1求實數(shù)m的取值范圍;

2證明:

查看答案和解析>>

同步練習(xí)冊答案