【題目】學(xué)校某研究性學(xué)習(xí)小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)y與聽課時(shí)間x(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)x∈(0,12]時(shí),圖象是二次函數(shù)圖象的一部分,其中頂點(diǎn)A(10,80),過點(diǎn)B(12,78);當(dāng)x∈[12,40]時(shí),圖象是線段BC,其中C(40,50).根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時(shí),學(xué)習(xí)效果最佳.
(1)試求y=f(x)的函數(shù)關(guān)系式;
(2)教師在什么時(shí)段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請說明理由.
【答案】(1);(2)老師在時(shí)段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳.
【解析】
試題(1)先根據(jù)頂點(diǎn)式設(shè)二次函數(shù)解析式,再代入點(diǎn)求開口,最后利用待定系數(shù)法求一次函數(shù)解析式,寫成分段函數(shù)形式(2)由題意解不等式,先分段求解,再求并集
試題解析:解:(1)當(dāng)x∈(0,12]時(shí),
設(shè)f(x)=a(x﹣10)2+80
過點(diǎn)(12,78)代入得,
則
當(dāng)x∈[12,40]時(shí),
設(shè)y=kx+b,過點(diǎn)B(12,78)、C(40,50)
得,即y=﹣x+90
則的函數(shù)關(guān)系式為
(2)由題意得,或
得4<x≤12或12<x<28,
4<x<28
則老師就在x∈(4,28)時(shí)段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少兒游泳隊(duì)需對隊(duì)員進(jìn)行限時(shí)的仰臥起坐達(dá)標(biāo)測試;已知隊(duì)員的測試分?jǐn)?shù)與仰臥起坐
個(gè)數(shù)之間的關(guān)系如下:;測試規(guī)則:每位隊(duì)員最多進(jìn)行三組測試,
每組限時(shí)1分鐘,當(dāng)一組測完,測試成績達(dá)到60分或以上時(shí),就以此組測試成績作為該
隊(duì)員的成績,無需再進(jìn)行后續(xù)的測試,最多進(jìn)行三組;根據(jù)以往的訓(xùn)練統(tǒng)計(jì),隊(duì)員“喵兒”
在一分鐘內(nèi)限時(shí)測試的頻率分布直方圖如下:
(1)計(jì)算值,并根據(jù)直方圖計(jì)算“喵兒”1分鐘內(nèi)仰臥起坐的個(gè)數(shù);
(2)計(jì)算在本次的三組測試中,“喵兒”得分等于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(a為正常數(shù)),且函數(shù)和的圖象與y軸的交點(diǎn)重合.
(1)求a實(shí)數(shù)的值
(2)若(b為常數(shù))試討論函數(shù)的奇偶性;
(3)若關(guān)于x的不等式有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對在直角坐標(biāo)系的第一象限內(nèi)的任意兩點(diǎn)作如下定義:若,那么稱點(diǎn)是點(diǎn)的“上位點(diǎn)”同時(shí)點(diǎn)是點(diǎn)的“下位點(diǎn)”
(1)試寫出點(diǎn)的一個(gè)“上位點(diǎn)”坐標(biāo)和一個(gè)“下位點(diǎn)”坐標(biāo);
(2)已知點(diǎn)是點(diǎn)的“上位點(diǎn)”,判斷是否一定存在點(diǎn)滿足既是點(diǎn)的“上位點(diǎn)”,又是點(diǎn)的“下位點(diǎn)”若存在,寫出一個(gè)點(diǎn)坐標(biāo),并證明:若不存在,則說明理由;
(3)設(shè)正整數(shù)滿足以下條件:對集合,總存在,使得點(diǎn)既是點(diǎn)的“下位點(diǎn)”,又是點(diǎn)的“上位點(diǎn)”,求正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線與橢圓相交于,兩個(gè)不同的點(diǎn),與軸相交于點(diǎn),為坐標(biāo)原點(diǎn).
(1)證明:;
(2)若,求的面積取得最大值時(shí)橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖像經(jīng)過點(diǎn) ,且滿足,
(1)求的解析式;
(2)已知,求函數(shù)在的最大值和最小值;
函數(shù)的圖像上是否存在這樣的點(diǎn),其橫坐標(biāo)是正整數(shù),縱坐標(biāo)是一個(gè)完全平方數(shù)?如果存在,求出這樣的點(diǎn)的坐標(biāo);如果不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線和直線在該直角坐標(biāo)系下的普通方程;
(2)動點(diǎn)在曲線上,動點(diǎn)在直線上,定點(diǎn)的坐標(biāo)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)消防安全意識,某中學(xué)對全體學(xué)生做了一次消防知識講座,從男生中隨機(jī)抽取人,從女生中隨機(jī)抽取人參加消防知識測試,統(tǒng)計(jì)數(shù)據(jù)得到如下列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
男生 | |||
女生 | |||
總計(jì) |
(1)試判斷能否有的把握認(rèn)為消防知識的測試成績優(yōu)秀與否與性別有關(guān);
附:
(2)為了宣傳消防知識,從該校測試成績獲得優(yōu)秀的同學(xué)中采用分層抽樣的方法,隨機(jī)選出人組成宣傳小組.現(xiàn)從這人中隨機(jī)抽取人到校外宣傳,求到校外宣傳的同學(xué)中男生人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】口袋里共有4個(gè)球,其中有2個(gè)是白球,2個(gè)是黑球,這4個(gè)球除顏色外完全相同。4個(gè)人按順序依次從中摸出一個(gè)球(不放回),試計(jì)算第二個(gè)人摸到白球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com