【題目】如圖,AB是半圓O的直徑,C是半圓O上除A,B外的一個動點,DC垂直于半圓O所在的平面,DCEB,DCEB1,AB4.

1)證明:平面ADE⊥平面ACD;

2)當(dāng)C點為半圓的中點時,求二面角DAEB的余弦值.

【答案】1)證明見解析(2

【解析】

1)由BCAC,BCCDBC⊥平面ACD,證明四邊形DCBE是平行四邊形得DEBC,故而DE平面ACD,從而得證面面垂直;

2)建立空間坐標(biāo)系,求出兩半平面的法向量,計算法向量的夾角得出二面角的大小.

1)證明:∵AB是圓O的直徑,∴ACBC,

DC⊥平面ABC,BC平面ABC,

DCBC,又DCACC,

BC⊥平面ACD

DCEB,DCEB,

∴四邊形DCBE是平行四邊形,∴DEBC,

DE⊥平面ACD,

DE平面ADE

∴平面ACD⊥平面ADE.

2)當(dāng)C點為半圓的中點時,ACBC2

C為原點,以CA,CBCD為坐標(biāo)軸建立空間坐標(biāo)系如圖所示:

D0,0,1),E0,2,1),A2,0,0),B0,2,0),

(﹣2,2,0),0,0,1),0,2,0),2,0,﹣1),

設(shè)平面DAE的法向量為x1,y1,z1),平面ABE的法向量為x2,y2z2),

,,即,,

x111,0,2),令x211,1,0.

cos.

∵二面角DAEB是鈍二面角,

∴二面角DAEB的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市10000名職業(yè)中學(xué)高三學(xué)生參加了一項綜合技能測試,從中隨機抽取100名學(xué)生的測試成績,制作了以下的測試成績(滿分是184分)的頻率分布直方圖.

市教育局規(guī)定每個學(xué)生需要繳考試費100元.某企業(yè)根據(jù)這100000名職業(yè)中學(xué)高三學(xué)生綜合技能測試成績來招聘員工,劃定的招聘錄取分?jǐn)?shù)線為172分,且補助已經(jīng)被錄取的學(xué)生每個人元的交通和餐補費.

(1)已知甲、乙兩名學(xué)生的測試成績分別為168分和170分,求技能測試成績的中位數(shù),并對甲、乙的成績作出客觀的評價;

(2)令表示每個學(xué)生的交費或獲得交通和餐補費的代數(shù)和,把的函數(shù)來表示,并根據(jù)頻率分布直方圖估計的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為(其中為參數(shù)).現(xiàn)以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出直線普通方程和曲線的直角坐標(biāo)方程;

(2)過點,且與直線平行的直線兩點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為,為參數(shù),在以坐標(biāo)原點O為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為

求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

若射線l與曲線的交點分別為A,B異于原點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為

(1)設(shè)是曲線上的一個動點,若點到直線的距離的最大值為,求的值;

(2)若曲線上任意一點都滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知非常數(shù)的整系數(shù)多項式滿足.①證明:對所有正整數(shù),至少有五個不同的質(zhì)因數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近期中央電視臺播出的《中國詩詞大會》火遍全國,下面是組委會在選拔賽時隨機抽取的100名選手的成績,按成績分組,得到的頻率分布表如下所示.

題號

分組

頻數(shù)

頻率

第1組

0.100

第2組

第3組

20

第4組

20

0.200

第5組

10

0.100

第6組

100

1.00

(1)請先求出頻率分布表中①、②位置的相應(yīng)數(shù)據(jù),再完成如下的頻率分布直方圖;

(2)組委會決定在5名(其中第3組2名,第4組2名,第5組1名)選手中隨機抽取2名選接受考官進行面試,求第4組至少有1名選手被考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為為參數(shù)).

1)設(shè)直線l與曲線C交于MN兩點,求|MN|;

2)若點Pxy)為曲線C上任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)R).

1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

2)若對任意實數(shù),當(dāng)時,函數(shù)的最大值為,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案