【題目】一個三棱錐的三視圖如下圖所示,則該幾何體的體積為
A. B. C. D.
【答案】C
【解析】由三視圖可得到如圖所示幾何體,該幾何體是由正方體切割得到的,利用傳統(tǒng)法或空間向量法可求得三棱錐的高為,∴該幾何體的體積為.
點睛:三視圖問題的常見類型及解題策略
(1)由幾何體的直觀圖求三視圖.注意正視圖、側視圖和俯視圖的觀察方向,注意看到的部分用實線表示,不能看到的部分用虛線表示.
(2)由幾何體的部分視圖畫出剩余的部分視圖.先根據(jù)已知的一部分三視圖,還原、推測直觀圖的可能形式,然后再找其剩下部分三視圖的可能形式.當然作為選擇題,也可將選項逐項代入,再看看給出的部分三視圖是否符合.
(3)由幾何體的三視圖還原幾何體的形狀.要熟悉柱、錐、臺、球的三視圖,明確三視圖的形成原理,結合空間想象將三視圖還原為實物圖.
科目:高中數(shù)學 來源: 題型:
【題目】已知半徑為5的圓的圓心在軸上,圓心的橫坐標是整數(shù),且與直線相切.
(1)求圓的方程;
(2)設直線與圓相交于、兩點,求實數(shù)的取值范圍;
(3)在(2)的條件下,是否存在實數(shù),使得弦的垂直平分線過點?若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直三棱柱中,,,是的中點,是等腰三角形,為的中點,為上一點.
(I)若平面,求;
(II)平面將三棱柱分成兩個部分,求較小部分與較大部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知A= ,b2﹣a2= c2 .
(1)求tanC的值;
(2)若△ABC的面積為3,求b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于y=3sin(2x﹣ )有以下命題:
①f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z);
②函數(shù)的解析式可化為y=3cos(2x﹣ );
③圖象關于x=﹣ 對稱;④圖象關于點(﹣ ,0)對稱.
其中正確的是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,兩焦點分別為,右頂點為, .
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設過定點的直線與雙曲線的左支有兩個交點,與橢圓交于兩點,與圓交于兩點,若的面積為, ,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量,設.
(1)求函數(shù)的解析式及單調(diào)遞增區(qū)間;
(2)在中,分別為內(nèi)角的對邊,且,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com