【題目】已知橢圓:,點.

(1)設是橢圓上任意的一點,是點關于坐標原點的對稱點,記,求的取值范圍;

(2)已知點,是橢圓上在第一象限內的點,記為經(jīng)過原點與點的直線,截直線所得的線段長,試將表示成直線的斜率的函數(shù).

【答案】(1);(2).

【解析】

試題分析:(1)設的坐標為,則的坐標為,先求出,然后運用向量數(shù)量積的坐標運算能夠求出的取值范圍;2)根據(jù)為雙曲線上第一象限內的點,可知直線的斜率,再由題設條件根據(jù)的不同取值范圍試將表示為直線的斜率的函數(shù).

試題解析:(1)設,則,

所以,又,

所以,又,所以.

(2)因為是橢圓上在第一象限內的點,則的斜率,且.

時,截直線所得的線段的兩個端點分別是直線與直線的交點,由已知,,

聯(lián)立解得,聯(lián)立解得,

于是;

時,截直線所得的線段的兩個端點分別是直線與直線的交點,由已知,

聯(lián)立解得,

于是.

綜上所述,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的奇函數(shù),時,其中,是自然對數(shù)的底數(shù)=2.71828.

的值;

時,方程有實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足.

(1)求證:數(shù)列是等比數(shù)列,并求的通項公式;

(2)記數(shù)列的前項和,求使得成立的最小整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列中,,,

(1)設,證明:數(shù)列是等差數(shù)列;

(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解小學生的體能情況,抽取了某小學同年級部分學生進行跳繩測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖所示),已知圖中從左到右前三個小組的頻率分別時0.1,0.3,0.4,第一小組的頻數(shù)為5.

(1)求第四小組的頻率?

(2)問參加這次測試的學生人數(shù)是多少?

(3)問在這次測試中,學生跳繩次數(shù)的中位數(shù)落在第幾小組內?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上的偶函數(shù),其圖象關于點對稱,且在區(qū)間上是單調函數(shù),則的值是( )

A. B. C. D. 無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱中,已知,點在底面的投影是線段的中點

(1)證明:在側棱上存在一點,使得平面,并求出的長;

(2)求:平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,平面,,且為等邊三角形,,與平面所成角的正弦值為

1)若是線段的中點,證明:平面

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以邊長為4的等比三角形的頂點以及邊的中點為左、右焦點的橢圓過兩點.

1)求該橢圓的標準方程;

2)過點軸不垂直的直線交橢圓于兩點,求證直線的交點在一條直線上.

查看答案和解析>>

同步練習冊答案