函數(shù)f(x)=xlnx的單調(diào)遞增區(qū)間是( 。
分析:求f(x)=xlnx的導(dǎo)數(shù)f′(x),由f′(x)>0,即可求得答案.
解答:解:∵f′(x)=lnx+1,
令f′(x)>0得:lnx>-1,
∴x>e-1=
1
e

∴函數(shù)f(x)=xlnx的單調(diào)遞增區(qū)間為(
1
e
,+∞).
故選B.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,易錯(cuò)點(diǎn)在于忽視函數(shù)的定義域,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=xln|x|的圖象大致是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xln(1+x)-a(x+1),其中a為實(shí)常數(shù).
(1)當(dāng)x∈[1,+∞)時(shí),f′(x)>0恒成立,求a的取值范圍;
(2)求函數(shù)g(x)=f′(x)-
ax1+x
的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=xln (x+2)-1的圖象與x軸的交點(diǎn)個(gè)數(shù)為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=xln(ex+1)-
12
x2+3,x∈[-t,t]
(t>0),若函數(shù)f(x)的最大值是M,最小值是m,則M+m=
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•孝感模擬)已知函數(shù)f(x)=xln x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)k為正常數(shù),設(shè)g(x)=f(x)+f(k-x),求函數(shù)g(x)的最小值;
(3)若a>0,b>0證明:f(a)+(a+b)ln2≥f(a+b)-f(b)

查看答案和解析>>

同步練習(xí)冊(cè)答案