【題目】已知拋物線C:,點在x軸的正半軸上,過點M的直線l與拋線C相交于A、B兩點,O為坐標原點.
若,且直線l的斜率為1,求證:以AB為直徑的圓與拋物線C的準線相切;
是否存在定點M,使得不論直線l繞點M如何轉(zhuǎn)動,恒為定值?若存在,請求出點M的坐標;若不存在,請說明理由.
【答案】(1)見證明;(2)見解析
【解析】
寫出直線AB方程為,與拋物線方程聯(lián)立,利用韋達定理與弦長公式計算值,并求出線段AB的中點到準線的距離,證明該距離等于的一半,即可證明結(jié)論成立;設直線AB的方程為,并設點、,列出韋達定理,結(jié)合弦長公式得出的表達式,根據(jù)表達式為定值得出m的值,從而可求出定點M的坐標.
當時,且直線l的斜率為1時,直線l的方程為,設點、,
將直線l的方程代入拋物線C的方程,消去y得,,
由韋達定理可得,,
由弦長公式可得,
線段AB的中點的橫坐標為3,所以,線段AB的中點到拋物線準線的距離為4,
因此,以AB為直徑的圓與拋物線C的準線相切;
設直線l的方程為,設點、,
將直線l的方程代入拋物線方程并化簡得,
由韋達定理可得,,
,同理可得,
所以,為定值,
所以,,即時,恒為定值.
此時,定點M的坐標為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x),對任意的a,b∈R,都有f(a+b)=f(a)+f(b)-1,并且當x<0時,f(x)>1.
(1)求證:f(x)是R上的減函數(shù);
(2)若f(6)=7,解不等式f(3m2-2m-2)<4.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= x3-ax2,a∈R.
(1)當a=2時,求曲線y=f(x)在點(3,f(3))處的切線方程;
(2)設函數(shù)g(x)=f(x)+(x-a)cos x-sin x,討論g(x)的單調(diào)性并判斷有無極值,有極值時求出極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C過點M(0,-2)、N(3,1),且圓心C在直線x+2y+1=0上.
(1)求圓C的方程;
(2)設直線ax-y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年是新中國成立70周年,也是全面建成小康社會的關(guān)鍵之年.為喜迎祖國70周年生日,全民齊心奮力建設小康社會,某校特舉辦“喜迎國慶,共建小康”知識競賽活動.下面的莖葉圖是參賽兩組選手的答題得分情況,則下列說法正確的是( )
甲 | 乙 | |||||
5 | 7 | 7 | ||||
7 | 3 | 2 | 8 | 3 | 4 | 5 |
3 | 9 | 1 |
A.甲組選手得分的平均數(shù)小于乙組選手得分的平均數(shù).
B.甲組選手得分的中位數(shù)大于乙組選手得分的平均數(shù).
C.甲組選手得分的中位數(shù)等于乙組選手得分的中位數(shù).
D.甲組選手得分的方差大于乙組選手得分的方差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過長期觀測得到:在交通繁忙的時段,某公路段的車流量(千輛/小時)與汽車的平均速度(千米/小時)之間的函數(shù)關(guān)系為:.
(1)在該時段內(nèi),當汽車的平均速度為多少時,車流量最大?最大車流量為多少?
(2)若要求在該時段內(nèi)車流量超過10千輛/小時,則汽車的平均速度應在什么范圍?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地一年的氣溫Q(t)(單位:℃)與時間t(月份)之間的關(guān)系如圖所示,已知該年的平均氣溫為10 ℃,令C(t)表示時間段[0,t]的平均氣溫,下列四個函數(shù)圖象中,最能表示C(t)與t之間的函數(shù)關(guān)系的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點A(-,0),B(,0),直線MA,MB交于點M,它們的斜率之積為常數(shù)m(m≠0),且△MAB的面積最大值為,設動點M的軌跡為曲線E.
(1)求曲線E的方程;
(2)過曲線E外一點Q作E的兩條切線l1,l2,若它們的斜率之積為-1,那么·是否為定值?若是,請求出該值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù) (k為常數(shù),e=2.718 28…是自然對數(shù)的底數(shù)).
(1)當k≤0時,求函數(shù)f (x)的單調(diào)區(qū)間;
(2)若函數(shù)f (x)在(0,2)內(nèi)存在兩個極值點,求k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com