已知二次函數(shù)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為,數(shù)列的前項(xiàng)和為,點(diǎn)均在函數(shù)的圖像上.
(1)求的解析式;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),是數(shù)列的前n項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù).
(1) (2) (3)10
【解析】
試題分析:(1)利用導(dǎo)函數(shù)及待定系數(shù)法求解;(2)利用與的關(guān)系求通項(xiàng)公式,要注意對(duì)進(jìn)行討論;(3)數(shù)列求和的方法由數(shù)列的通項(xiàng)公式?jīng)Q定.常用的方法有:公式求和法、倒序相加法、錯(cuò)位相減法、裂項(xiàng)相消法、分組轉(zhuǎn)化法等。先利用裂項(xiàng)相消法求和,再求其最大值,就得到的取值范圍.
試題解析:(1)依題意設(shè)二次函數(shù),則. 1分
由于,得: 2分
所以. 3分
(2)由點(diǎn)均在函數(shù)的圖像上,又,
所以. 4分
當(dāng)時(shí), 5分
當(dāng)時(shí), 7分
所以, 8分
(3)由(2)得知= 9分
=, 11分
故=
=. 12分
要使()成立,需要滿足≤,13分
即,所以滿足要求的最小正整數(shù)m為10. 14分
考點(diǎn):1.導(dǎo)數(shù)運(yùn)算 2.通項(xiàng)公式、前n項(xiàng)和的求法 3.函數(shù)(數(shù)列)最值的求法
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
1 |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分15分)已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn),是偶函數(shù),函數(shù)的圖象與直線相切,且切點(diǎn)位于第一象限.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)若對(duì)一切,不等式恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)若關(guān)于x的方程有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三11月月考理科數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分)
已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)、與點(diǎn),設(shè)函數(shù)
在和處取到極值,其中,。
(1)求的二次項(xiàng)系數(shù)的值;
(2)比較的大小(要求按從小到大排列);
(3)若,且過(guò)原點(diǎn)存在兩條互相垂直的直線與曲線均相切,求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷 題型:解答題
(本題滿分13分)已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn),且不等式對(duì)一切實(shí)數(shù)都成立.
(1)求函數(shù)的解析式;
(2)若對(duì)一切,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com