【題目】已知函數(shù)f(x)=|x|(x﹣a),a為實(shí)數(shù).
(1)若函數(shù)f(x)為奇函數(shù),求實(shí)數(shù)a的值;
(2)若函數(shù)f(x)在[0,2]為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)a(a<0),使得f(x)在閉區(qū)間上的最大值為2,若存在,求出a的值;若不存在,請說明理由.
【答案】(1) a=0.(2)a≤0(3)a=﹣3.
【解析】試題分析:(1)因?yàn)閒(x)為奇函數(shù),所以f(﹣x)=﹣f(x),根據(jù)函數(shù)解析式,化簡式子得2a|x|=0對任意x∈R恒成立,求得 ;(2)當(dāng) 時(shí),f(x)=|x|(x﹣a)可去掉絕對值號(hào)得f(x)=x(x﹣a),其對稱軸為 ,要使函數(shù)f(x)在[0,2]上單調(diào)遞增,由二次函數(shù)的圖像可得 ,求 的范圍。(3)當(dāng) 時(shí), 的解析式去掉絕對值號(hào)可得 ,因?yàn)閒(x)在閉區(qū)間上的最大值為2,由特殊值 ,限定 的范圍,因?yàn)楹瘮?shù)的對稱軸為 ,因?yàn)閍<0,所以函數(shù)在(0,+∞)上遞增,所以,所以必在區(qū)間[﹣1,0]上取最大值2,討論函數(shù)在[﹣1,0]上的單調(diào)性,最大值等于2,可求實(shí)數(shù) 的值。
試題解析:(1)因?yàn)槠婧瘮?shù)f(x)定義域?yàn)镽,
所以f(﹣x)=﹣f(x)對任意x∈R恒成立,
即|﹣x|(﹣x﹣a)=﹣|x|(x﹣a),即|x|(﹣x﹣a+x﹣a)=0,
即2a|x|=0對任意x∈R恒成立,
所以a=0.
(2)因?yàn)閤∈[0,2],所以f(x)=x(x﹣a),
顯然二次函數(shù)的對稱軸為,由于函數(shù)f(x)在[0,2]上單調(diào)遞增,
所以,
即a≤0(若分a<0,a=0,a>0三種情況討論即可)
(3)∵a<0,,
∴f(﹣1)=﹣1﹣a≤2,∴﹣a≤3(先用特殊值約束范圍)
∴,f(x)在(0,+∞)上遞增,
∴f(x)必在區(qū)間[﹣1,0]上取最大值2.
當(dāng),即a<﹣2時(shí),則f(﹣1)=2,a=﹣3成立
當(dāng),即0>a≥﹣2時(shí),,則(舍)
綜上,a=﹣3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某DVD光盤銷售部每天的房租、人員工資等固定成本為300元,每張DVD光盤的進(jìn)價(jià)是6元,銷售單價(jià)與日均銷售量的關(guān)系如表所示:
銷售單價(jià)(元) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
日均銷售量(張) | 480 | 440 | 400 | 360 | 320 | 280 | 240 |
(1)請根據(jù)以上數(shù)據(jù)作出分析,寫出日均銷售量P(x)(張)關(guān)于銷售單價(jià)x(元)的函數(shù)關(guān)系式,并寫出其定義域;
(2)問這個(gè)銷售部銷售的DVD光盤銷售單價(jià)定為多少時(shí)才能使日均銷售利潤最大?最大銷售利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=.
(1)求f(2)與f, f(3)與f;
(2)由(1)中求得結(jié)果,你能發(fā)現(xiàn)f(x)與f有什么關(guān)系?并證明你的發(fā)現(xiàn);
(3)求f(1)+f(2)+f(3)+…+f(2013)+f+f+…+f.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線: ,曲線: (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系.
(Ⅰ)求曲線, 的極坐標(biāo)方程;
(Ⅱ)曲線: (為參數(shù), , )分別交, 于, 兩點(diǎn),當(dāng)取何值時(shí), 取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱的底面為正三角形,、、分別是、、的中點(diǎn).
⑴若,求證:平面;
⑵若為中點(diǎn),,四棱錐的體積為,求三棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)在區(qū)間上單調(diào)遞增;函數(shù)在其定義域上存在極值.
(1)若為真命題,求實(shí)數(shù)的取值范圍;
(2)如果“或”為真命題,“且”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公比小于1的等比數(shù)列的前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,為自然對數(shù)的底數(shù)),是的導(dǎo)函數(shù).
(Ⅰ)當(dāng)時(shí),求證:;
(Ⅱ)是否存在正整數(shù),使得對一切恒成立?若存在,求出的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時(shí),可全部租出.若每輛車的月租金每增加50元,未租出的車將會(huì)增加一輛,租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
(1)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?
(2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大,最大月收益是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com