15.“a>b”是“3a>2b”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)不等式的性質(zhì)結(jié)合充分條件和必要條件的定義進(jìn)行判斷.

解答 解:由a>b⇒3a>3b,當(dāng)b≤0時(shí),3b≤2b,故a>b”推不出“3a>2b”,
由3a>2b推不出a>b,當(dāng)a=b時(shí),3>2,
故“a>b”是“3a>2b”既不充分也不必要條件,
故選:D

點(diǎn)評 本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的關(guān)系是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的漸近線為等邊三角形OAB的邊OA,OB所在直線,直線AB過雙曲線的焦點(diǎn),且|AB|=2,則a=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩頂點(diǎn)為A1,A2,虛軸兩端點(diǎn)為B1,B2,兩焦點(diǎn)為F1,F(xiàn)2,若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2,則雙曲線的離心率是( 。
A.$\sqrt{5}$-1B.$\frac{3+\sqrt{5}}{2}$C.$\frac{\sqrt{5}+1}{2}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)F2(1,0),點(diǎn)H(2,$\frac{2\sqrt{10}}{3}$)在橢圓上
(Ⅰ)求橢圓的方程;
(Ⅱ)第一象限內(nèi)一點(diǎn)M在圓C:x2+y2=b2上,過M作圓C的切線交橢圓于P,Q兩點(diǎn).問:△PF2Q的周長是否為定值,若是,求出定值,不是的話說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.甲、乙兩盒中各裝有大小相同的小球9個(gè),其中甲盒中紅色、黑色、白色小球的個(gè)數(shù)分別為2,3,4;乙盒中紅色、黑色、白色小球的個(gè)數(shù)均為3.學(xué)生A從甲盒中取球,學(xué)習(xí)B從乙盒中取球.
(Ⅰ)若A,B各取一球,求兩人所取的球顏色不同的概率;
(Ⅱ)若每人依次各取2球,稱同一人手中兩球鹽酸相同的取法為成功取法,記成功取法次數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$過點(diǎn)A(1,1),它的焦點(diǎn)F在其漸近線上的射影記為M,且△OFM(O為原點(diǎn))的面積為$\frac{{\sqrt{2}}}{4}$.
(Ⅰ)求雙曲線的方程;
(Ⅱ)過點(diǎn)A作雙曲線的兩條動弦AB,AC,設(shè)直線AB,直線AC的斜率分別為k1,k2,且(k1+1)(k2+1)=-1恒成立,證明:直線BC的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)=|x|+\frac{m}{x}-2$(x≠0).
(1)當(dāng)m=2時(shí),判斷f(x)在(-∞,0)的單調(diào)性,并用定義證明;
(2)討論f(x)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.定義在R上的函數(shù)f(x)=asinωx+bcosωx+1(ω>1,a>0,b>0)的周期為π,$f({\frac{π}{4}})=\sqrt{3}+1$,且f(x)的最大值為3.
(1)求f(x)的表達(dá)式;
(2)求f(x)的對稱中心和對稱軸;
(3)說明f(x)的圖象由y=2sinx的圖象經(jīng)過怎樣的變換得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.一般來說,一個(gè)人腳掌越長,他的身高就越高.現(xiàn)對10名成年人的腳掌x與身高y進(jìn)行測量,得到數(shù)據(jù)(單位:cm)作為一個(gè)樣本如下表示:
腳掌長( 。20212223242526272829
身高( 。141146154160169176181188197203
(1)在上表數(shù)據(jù)中,以“腳掌長”為橫坐標(biāo),“身高”為縱坐標(biāo),作出散點(diǎn)圖后,發(fā)現(xiàn)散點(diǎn)在一條直線附近,試求“身高”與“腳掌長”之間的線性回歸方程$\widehaty=\widehatbx+\widehata$;
(2)若某人的腳掌長為26.5cm,試估計(jì)此人的身高;
(3)在樣本中,從身高180cm以上的4人中隨機(jī)抽取2人作進(jìn)一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
附:線性回歸方程$\widehaty=\widehatbx+\widehata$中,$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{{{\sum_{i=1}^n{({{x_i}-\overline x})}}^2}}}$,$\widehata=\overline y-\widehatb\overline x$,其中$\overline x$,$\overline y$為樣本平均值.
參考數(shù)據(jù):$\sum_{i=1}^{10}{({x_i}-\bar x)({y_i}-\bar y)}=577.5$,$\sum_{i=1}^{10}{{{({x_i}-\bar x)}^2}=82.5}$.

查看答案和解析>>

同步練習(xí)冊答案