(本小題滿分14分)
如圖,在四棱錐
中,底面
為矩形,平面
⊥平面
,
,
,
為
的中點,
求證:
(1)
∥平面
;
(2)平面
平面
.
(1)設
,連接
,易知
是
的中點,
∵
是
中點.∴在△
中,
∥
, …………2分
∵
平面
,
平面
,
∴
∥平面
. ………………………………6分
(2)
平面
平面
,
,
平面
平面
平面
,又
平面
,
又
,
,
平面
,………………10分
在
中,
為
的中點,
,
平面
,
又
平面
,
平面
平面
.…………………………14分
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
本小題
滿分12分
如圖,在直三棱柱ABC—A
1B
1C
1中,AC=1,AB=
,BC=
,AA
1=
。
(I)求證:A
1B⊥B
1C;
(II)求二面角A
1—B
1C—B的大小。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,在四面體
中,截面
是正方形,則在下列命題中,錯誤的為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)如圖,在四棱錐P-ABCD中,底面
ABCD是矩形,PA⊥平面ABCD,AP=AB,
BP=BC=2,E,F(xiàn)分別是PB,PC的中點.
(Ⅰ)證明:EF∥平面PAD;
(Ⅱ)求四棱錐E-ABCD的體積V;
(Ⅲ)求二面角E-AD-C的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐P—ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB//DC,∠BCD=90°,E為棱PC上異于C的一點,DE⊥BE
(1)證明:E為PC的中點;
(2)求二面角P—DE—A的大小
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,如果MC⊥菱形ABCD所在的平面,
那么MA與BD的位置關(guān)系是
A.垂直相交 | B.相交但不垂直 |
C.異面但不垂直 | D.異面且垂直 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
.已知
S、
A、
B、
C是球
O表面上的四個點,
SA⊥平面
ABC,
AB⊥
BC,
SA=2,
AB=
BC=
,則球
O的表面積為_______.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,D,E分別為三棱錐P—ABC
的棱AP、AB上的點,且AD:DP=AE:EB=1:3.求證:DE//平面PBC
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12)
如圖,在四棱錐S—ABCD中,已知底面ABCD為直角梯形,其中AD//BC,
底面ABCD,SA=AB=BC=2,SD與平面ABCD所成角的正切值為
。
(Ⅰ)在棱SD上找一點E,使CE//平面SAB,
并證明。
(Ⅱ)求二面角B—SC—D的余弦值。
查看答案和解析>>