設(shè)數(shù)列{an}為等差數(shù)列,其前n項(xiàng)和為Sn,已知a1+a7=66,a2+a8=62,若對(duì)任意n∈N*,都有Sn≤Sk成立,則正整數(shù)k=
20
20
分析:根據(jù)a1+a7=66,a2+a8=62,求得數(shù)列的首項(xiàng)與公差,從而可得數(shù)列前n項(xiàng)和,求其最值,即可得到結(jié)論.
解答:解:設(shè)等差數(shù)列的公差為d,則
∵a1+a7=66,a2+a8=62,
∴2a1+6d=66,2a1+8d=62,
∴d=-2,a1=39
∴Sn=39n+
n(n-1)
2
•(-2)
=-n2+40n=-(n-20)2-400
∴n=20時(shí),Sn取得最大值
∵對(duì)任意n∈N*,都有Sn≤Sk成立,
∴正整數(shù)k=20
故答案為:20
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)與求和,考查數(shù)列前n項(xiàng)和的最值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a1=1,點(diǎn)(an,an+1)在函數(shù)f(x)=x2+4x+2的圖象上,其中n=1,2,3,4,…
(1)證明:數(shù)列{lg(an+2)}是等比數(shù)列;
(2)設(shè)數(shù)列{an+2}的前n項(xiàng)積為T(mén)n,求Tn及數(shù)列{an}的通項(xiàng)公式;
(3)已知bn
1
an+1
1
an+3
的等差中項(xiàng),數(shù)列{bn}的前n項(xiàng)和為Sn,求證:
3
8
Sn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對(duì)任意n∈N*,Sn是an2和an的等差中項(xiàng).
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明
1
S1
+
1
S2
+…+
1
Sn
<2;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對(duì)滿(mǎn)足n>m的一切正整數(shù)n,不等式Sn-1005>
a
2
n
2
恒成立,求這樣的正整數(shù)m共有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx滿(mǎn)足條件:①f(0)=f(1);  ②f(x)的最小值為-
1
8

(1)求函數(shù)f(x)的解析式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)積為T(mén)n,且Tn=(
4
5
f(n),求數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,若5f(an)是bn與an的等差中項(xiàng),試問(wèn)數(shù)列{bn}中第幾項(xiàng)的值最?求出這個(gè)最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對(duì)任意n∈N*,Sn
1
2
an2和an的等差中項(xiàng)
(Ⅰ)證明:數(shù)列為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明:
1
2
1
S1
+
1
S2
+…+
1
Sn
<1
;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對(duì)滿(mǎn)足n>m的一切正整數(shù)n,不等式2Sn-4200>
a
2
n
2
恒成立,試問(wèn):這樣的正整數(shù)m共有多少個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1=b1=1,b1+b2=a2,b3是a1與a4的等差中項(xiàng).
(I)求數(shù)列{an},{bn}的通項(xiàng)公式;
(II)求數(shù)列{
anbn
}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案